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INTRODUCTION

Parallel computation of unsteady flows requires significant computational resources. The
utilization of a network of workstations seems an efficient solution to the problem where
large problems can be treated at a reasonable cost. This approach requires the solution of
several problems:

the partitioning and distribution of the problem over a network of workstation,

.efficient communication tools,

.managing the system efficiently for a given problem.
Of course, there is the question of the efficiency of any given numerical algorithm to such
a computing system.

NPARC code was chosen as a sample for the application. For the explicit version of the
NPARC code both two- and three-dimensional problems were studied. Again both steady
and unsteady problems were investigated. The issues studied as a part of the research
program were:

*how to distribute the data between the workstations,

*how to compute and how to communicate at each node efficiently,

*how to balance the load distribution.
In the following, a summary of these activities is presented. Details of the work have
been presented and published as referenced.



SUMMARY OF THE WORK PERFORMED:

A. Parallelization of the NPARC code:

PARC2D code was initially supplied by NASA Lewis Research Center for this study.
This code was parallelized, by using GPAR, on the LACE cluster at Lewis. This results
of this study was presented

in reference 1. A variable time-stepping algorithm was proposed This algorithm was first
tested for steady flows.

Later, a version of NPARC code was parallelized for both two and three-dimensions.
Variable time stepping was further implemented. These studies were reported in
references 2 and 3.

B. Load Balancing

A dynamic load balancing procedure was developed for supporting an heterogenous
cluster of work stations. NPARC code was used to test this capability for both steady and
unsteady computations. Variable time-stepping was incorporated to the load balancing
algorithm, such that each block and interface can choose their own time step as shown in
figure 1. Figure 2 shows the overall computational procedure.

Also, research was conducted for determining the communication cost for a workstation
cluster connected with Ethernet. Results of this research are summarized in references
45 and 6.

C. Filtering Techniques

To improve the efficiency of parallel algorithms, filtering techniques were developed. By
using these techniques the communication and computation cost of the given parallel
algorithm can be reduced significantly. The description of the methodology and obtained
results are summarized in references 7, 8,9, and 10.
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EFFICIENCY CONSIDERATIONS FOR EXPLICIT CFD
SOLVERS ON PARALLEL COMPUTERS

H.U. AKAY and A. ECER

A parallel algorithm, based on subdividing the flow field into several subdomains and distributing
each subdomain onto available computers, is presented for the solution of Euler equations on
workstation clusters. Each block is treated as a different process in available computers on the network
and the load distribution is dvnamically balanced. Machine independence is achieved by combining the
flow code with a general CFD data base and a machine portable library. Strategies are explored for
integrating the unsteady flow equations explicitly in time by taking advantage of the local flow
conditions and the grid point distribution in each block.

1. INTRODUCTION

Solution of large-scale CFD problems requires, and will continue to require, computer resources
beyond those readily available. Memory and CPU requirements are still the key factors affecting
the progress in this area. Whether it is an implicit or explicit scheme, efficiency still remains a
major problem. Recently. considerable effort has been directed towards modifying algorithms for
efficiency and significant progress has been made in vectorizing and parallelizing these algorithms.

Our earlier work on parallel computations of CFD has led to the development of a CFD data
base program, GPAR!, which manages computational grids. GPAR utilizes a machine portable
library, APPL2, for implementations on different distributed memory systems. Using the GPAR
program, together with APPL, we were able to parallelize a number of flow codes>+4. In addition
to using machines with specific parallel architectures, we have explored the use of clusters of
workstations for paralle] computations. For cases where the number of solution blocks are greater
than the number of workstations, multi-processing is exercised in machines containing multiple
blocks. For such cases, we have also incorporated load balancing algorithms5~6.

The following factors affect efficiency in parallel computing:

. Ease in programming
. Ease in portability and scalability
. Ability to use heterogeneous systems

. Ease in load balancing

. Speed-up and scaiability

In this chapter, we present an explicit solution strategy for the solution of CFD problems,
which can readily be used on a network of heterogeneous workstations. We discuss the issues
related to the implementation of this scheme.

2. EULER EQUATIONS
2.1 Formulation

A finite element discretization of the compressible Euler equations can be formulated by adding
two diffusion operators as follows:




4 H.U. AKAY and A. ECER

ou oF o . 9F) a( aUu).
o T o s, ax.(eax.]'o ®

where U is the vector of conservation variables and F; are flux vectors defined as

p pu; ]
pu; puu; + pdy;
U=|pu; F, =| pusu; + pdy )
pu; puszu; + pds;
PE (PE+ p)u; |
Also,
JF;
U (3)

are the Jacobian matrices corresponding to flux vectors F;, p is the density, u; the velocity
components, and E is the total specific energy. The static pressure p is calculated from the
equation of state:

p=()’—1)p(E——;—uiuf) @

where 7 is the ratio of specific heats.

The third and fourth terms in Eq. | were introduced to stabilize the equations by adding artificial
diffusion”-10. Here, « is the streamwise diffusion coefficient for upwinding of the flux vectors
F, and € is an additional diffusion coefficient added in all directions, which can be computed from
local flow conditions and mesh characteristics as follows:

2
T T lli hl
a=c¢—x E=ct+cy3—5 |—=— 5
42 qz q ax;
where
12
iy, 2 ¥2
=3 2 () g=(u;)”  F=q+a ®)
§=1

In the above equations, h5 and u, represent the element characteristic lengths and velocity
components, respectively, in the direction of the natural coordinates &; of an isoparametric finite
element. a =/ yp/p is the speed of sound, and c¢; are user-specified constants used to control non-
physical oscillations of the numerical scheme. For most subsonic and transonic flows, we use
¢;=10c;=015-05and ¢;=1.0-2.0.
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2.2 Finite Element Discretization in Space

Using a weighting function vector W(x;), the weighted residual form of Eq. 1 is expressed as
follows

oU OF 9 oF )\ o ou
[L¥5 5 a[““xj a( ax)"ﬂ ° @

and by applying the Green-Gauss theorem on the last two terms of Eq. 7, a weak variational form
is obtained

r
U OF, oW oW \ oU
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where

oF JF
j .

i H
£2¢ is the element area, n, are the directional cosines of the outward normal vector on the element

boundaries I'¢, and H; are the boundary flux vectors resulting from diffusion operators. We
introduce the following interpolations to each conservation variable ¢, as follows

¢(X,',t)=Nj(Ii)¢}e‘(t) (11)

where N; are the spatial element interpolation functions, ¢f ; are the nodal point values of the
conscrvauon variable ¢ in an element e. Equal-order linear interpolations are used for all
variables. After using the same interpolation functions as weighting functions, we obtain the
following decoupled system of ordinary differential equations for each conservation variable ¢

Mioi=7f (12)
where
., det
$¢= dt} (13)
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F,, Gy and Hy are calculated for each conservation variable ¢ using Egs. 2, 9 and 10,
respectively. The term Gy in Eq. 15 may also be replaced with uy oF; /x;, where u; is the local
flow velocity vector, eliminating the need to calculate the inner product involving the Jacobian
matrix in Eq. 10. Although this provides more efficient results for transonic problems with
subsonic inflows and moderately high Mach numbers, it does not appear to provide enough
stability at high supersonic speeds*.

2.3 Boundary Conditions

Inflow and outflow boundaries are treated differently using the characteristic boundary method based
on whether the local flow conditions are subsonic or supersonic!!. For subsonic inflow boundaries
with known Mach number conditions, Riemann variables are used together with the values
extrapolated from the interior elements closest to the boundary. Similarly, for subsonic outflows,
the exit static pressure is specified together with the values extrapolated from the closest interior
elements. For supersonic inflows, all values of the conservation variables are fixed. For supersonic
outflows, values of conservation variables are extrapolated from the nearest interior ¢lements. A
zero normal mass flux boundary condition pu;n; =0 is imposed on solid boundaries.

2.4 Time-Integration of the Equations

Assembly of the element equations leads to the following system of equations for each of the
conservation variables

Mo=f (16)

Using forward-differencing in time, the time derivative of ¢ is expressed as
o7 = (o] -97) /4" an

where n denotes a time step and A" is the time increment at time step n. Substituting the above
into Eq. 16, we devise the following explicit scheme to calculate the solution at n+1:

P =g an (W) 7 (18)

where Mjj is the global matrix assembled from a lumped matrix approximation of M,; in Eq. 14.
Due to the explicit nature of the scheme in Eq. 18, the element Courant number limitation

A< Cmin{l/[(i: +a)/h¢]} (19)

must hold in each element for stability of the numerical integration!2, where ig is the local flow
speed, a is the speed of sound, hg is the element length in the local & direction, and C is a
constant less than unity.

For steady-state problems, the residual norm of each conservation variable, ¢ = {p, pu;, pE}.

R O
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is used for monitoring the convergence to steady-state and is calculated at each time step n as
ﬂodf-{ n+l n ! 2
| o -9
RII = ] ] 20
-S54 ®

Steady-state is considered reached when (R;) <107
avg

3. PARALLEL COMPUTING ENVIRONMENT AND EXPLICIT SOLVERS

Soluton of the Euler equations by both implicit and explicit methods has been greatly studied for
steady and unsteady flows. In this chapter, the emphasis is on the parallel implementation of
explicit solvers. In comparing parallelization of explicit and implicit schemes, one can make the
following observations:

= Explicit solvers are easier to parallelize since the data to be organized on a parailel computer
is simpler.

* The ratio of communication versus computational cost is higher for explicit schemes,
which reduces the efficiency of parallelization.

Also, for explicit solvers, scalability becomes more crucial due to the relative importance of the
communication costs. In the following, specific parallelization issues are discussed as appiied to
the scheme described above.

For the numerical integration of a system in the form d@/dt = f(9, 1), parallelization requires
distribution of the data over a number of processors. For an explicit solver, the calculation of
f{¢.1) can be localized on a processor quite easily. In the present application, we assign elements
to blocks, and blocks to processors. Parallel implementation of the algorithm involves the
following steps:

+ The computational grid is divided into a number of blocks equal to or greater than the
number of available computers, with one layer of elements overlapped at inter-block
boundaries as shown in Fig. 1.

+ The block and interface information is incorporated into the data base, which is distributed
to different machines.

+ Eq. 18 is solved inside a block solver on each processor locally.

» The inter-block information is transferred to an interface solver which also manages the
communication between neighboring blocks.

» The problem is load balanced dynamically for a given system of processors.

The flow chart of the paralle! CFD algorithm is shown in Fig. 2. The first step is to define the
grid in terms of blocks and interfaces. The assembly of grid points and their connectivities are
defined for each block and interface. The data base program, GPAR, manages such block-based data
and distributes it to the appropriate processors. Blocks are divided among the available processors
and interfaces attached to each block are also stored on that processor. Since each interface is
attached to two blocks, they appear in two processors and are prepared to communicate with each
other. The same basic solution algorithm is used in all blocks which is defined as a block solver.
The interface solver transfers data from each block to its interfaces, performs necessary
computations on interface nodes and communicates the results back to the corresponding blocks. In
return, the interfaces update the neighboring blocks as shown in Fig. 3. The interface solver
performs all necessary communications with relatively small amount of computations. The data
base management program GPAR supports block and interface solvers in terms of propagating the
data as soon as they are computed by the block solvers. The block data are commmunicated to the
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interfaces which inform their duplicates on other processors. The interfaces then update the:
blocks. The user does not have to employ any machine-specific send or receive commands. Insteac
the basic message passing commands of GPAR are issued in the interface solver for managing th:
interface data. Although APPL was used as the parallel message passing library for thi
implementation, the use of other message passing libraries such as PVM!3 is also possible.

Interfaces

FIGURE I: Blocks and intertaces.

Initialization
for Each Block

L
Block Soiver for
p. P, pv, pw, pE

Advance in Time

Y
Interface Solver for
p. pu, pv, pw, pE

!

Final No
Time

Yes

Save Solution

FIGURE 2: Flow chart of the parallel CFD code.
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FIGURE 3: Communication between blocks and interfaces
(£2,4 and £2g are blocks, [4g and I'g4 are interfaces).

In the present application, a block is defined as an entity in the data base consisting an
assembly of finite elements. After the unsteadiness d¢/dt is calculated locally in each block, one
has to communicate between the processors to propagate these changes. At the end of the
calculation of the d¢/dr vector at each node in each block, the interfaces are automatically updated
by the inrerface solver.

Steps of an explicit parallel scheme can then be outlined as follows:

e Initialize the data base.
* Do for each time step:

» Do for each block:

* Integrate the equations for the nodes in that block.

* Do for each interface:

e Gather information from the neighboring blocks to update the flow variables for the
nodes on that interface and send this information to the neighboring blocks.

Although the above particular scheme seems straightforward, there are several decisions to be
made. These are related to the problem to be solved and the computer system to be utilized. In
terms of solving a specific flow problem let us consider the flow around an airfoil. When one
generates a computational grid, certain regions are refined to account for the details of the flow
field. A uniformly refined grid increases the computational cost exponentiaily, especially for three-
dimensional problems. Different levels of grid refinement also suggest different choice of time
steps for stability requirements of the explicit scheme. If we compute with an explicit scheme by
using a constant time step for the entire grid, based on the stability requirements around the leading
edge of the airfoil, the scheme becomes quite expensive. Also, when considering the flow field in
different regions, one can observe that time step requirements can be different in terms of the
accuracy of the solution. The above discussion suggests that running an explicit algorithm on an
equally spaced grid with a constant time step is not a preferred solution. In a parallel computation
of such flow problems, one should consider the refinement of block grids differently to represent
the local flow conditions properly and perform the computations in a selective manner.

Another issue is the availability of hardware. In parallel computing, one can start with the
assumption that blocks will utilize similar computer resources which are readily available. The
correct problem should be stated as solving a given problem on a given computer system most
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efficiently. Furthermore, a portion of a specific computer system may be available to a specific
user on a given day and the computer system may be upgraded periodicaily. One would like to use
all available computer resources in a most efficient manner in such an hardware environment when
running a parallel code, in contrast to running on a single processor.

The use of an efficient data base management system is also critical in utilizing the available
computer resources. By using the above described system one can utilize any given computer
system supported by the message passing library, including heterogeneous systems. However, one
of the important features of parallel computers is the dynamic nature of available resources. One
would like to run the algorithm on a given machine efficiently without requiring an excessive
amount of computer time. For this purpose, a dynamic load balancing capability was developed®.
Based on an initial distribution of the blocks on available processors, the cost data is gathered in
terms of communication and computation for each block and interface. Better distribution of blocks
on available processors is then determined as more data is collected during these computations.
This algorithm can be periodically used to improve load balancing to account for changing loading
conditions of the individual processors in a given computer system. The interaction of the CFD
code with GPAR, APPL and the load balancing program is shown in Fig. 4.

APPL

Portable Parallel Library to
support different computers

GPAR

Load Balancer

Data base manager for a
given computational grid

]

CFD Code

Solves flow equations of a
block in a processor

FIGURE 4: Relationship between different parallel tools and a CFD application code.

4. EFFICIENCY CONSIDERATIONS FOR PARALLEL COMPUTATIONS

4.1 Load Balancing

As discussed above, dynamic load balancing capability is a critical factor in improving the
efficiency of parallel computations. While running parallel jobs by subdividing the solution
domain into several blocks on loosely-coupled systems such as networked workstations, one is
faced with the following situations:

* The computational grid may be divided into many solution blocks with varying sizes,
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» A process is assigned to each block and there may be more than one process on each
Processor,

+ The available multi-user and multi-tasking networked processors may have different

computational speeds and memory,

+ The load of each processor may vary due to initialization or termination of processes of

other users.

One way of achieving load balancing between the processors is to distribute an equal load, or
number of solution blocks, to available processors. This may require some effort in subdividing
the computational grid into a number of blocks several times greater than the number of
processors, which can be done at the initiation of execution’. In the development of this strategy,
it was originally assumed that the processes would be executed synchronously. During the
numerical integration of the equations, each block (or process) was synchronized at each time
step>. This results in certain restrictions to the load balancing. Here, we consider a solution
strategy which exploits nerworked workstation environments in which each processor can handle
multiple tasks and their loads may vary considerably. In addition, for muiti-user environments
considered here, computer joads can change dynamically since other users may start new processes
anvtime. Consequently, the effective computational speed of a computer may change dynamically
during the duration of parallel computations which may increase the elapsed time of computations.
This situation is improved by the dynamic load balancing algon'thm6. By checking the status of
processors during the time-integration of a problem, the loads are redistributed to available
machines as unbalanced loading conditions are detected.

4.2 Variable Time-Stepping - Steady and Unsteady Flows

Parallelization of explicit schemes is a rather straightforward task when the domain is subdivided
into several solution blocks. It has been demonstrated that for well balanced cases it is possible to
reach efficiencies of 75% or more, with 20 or more machines3. However, due to the Courant
number restriction on the time increment, the solution of large size problems is prohibitive, even
after parallelization. One has to consider more adapted schemes rather than performing similar
computations on all machines. Due to the Courant number restriction in Eq. 19, the time
increment Ar is directlv proportional to element size and inversely proportional to local speed.
Hence, At becomes most restrictive in regions with high flow speeds and denser grid points.
Shown in Fig. 5 is the scheme used in exchanging interface data between blocks with spatially
constant time steps for all blocks. In this case, the interface data is sent to neighbors at each ume
step with all blocks having the same time increment. One remedy for steady flow problems is to
use spatially variable time-stepping. On the other hand, drastic spatial variations in A delay the
convergence. Hence, it is more appropriate to subdivide the domain into regions with different At
in each. In such cases, we have found that one does not have to march in time with the same speed
in all the blocks. Of course, for unsteady flows, a time accurate solution of interfaces is necessary.
The block-based parallel approach adopted here makes the variation of Az in time and space both
for steady and unsteady problems quite convenient.
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FIGURE 5: Exchange of interface data in spatially constant time-stepping scheme.

For a flow domain subdivided into solution blocks for parallelization as implemented here, we
propose to select a local time step for each block as multiple of a minimum preset value Ar,,,.
For each nth time step and mth block we determine

At <C min{l/ [(E: +a)/h§]} @

and choose the actual time-step for each block as
Arp =k At < ALY (22)

where k is an integer. An upper limit on k is needed (e.g., 5) to minimize extrapolation errors.
This way, each block may advance with different time increments. For impulsively started flows.
it is safer to initially advance all blocks with a constant time step until the solution starts
developing. A similar technique was introduced by Léhner et al.!% in conjunction with a domain
splitting technique on serial machines.

In the case of unsteady flows, a block, advancing with a smaller time step than one of its
neighbors, can calculate its own interface conditions by extrapolation from the previously received
interface data. While blocks with smaller time steps are solved more frequently, the blocks with
larger time steps will be solved less frequently, thus using the resources (available machines) less.
In addition, there will be less interchange of interface data as shown in Fig. 6. Since the Courant
number limitation is usually small enough for time accuracy too, there is no appreciable danger in
loss of accuracy because of extrapolations.

For steady flows, there may not be any need for using the extrapolated interface data, since it is
not necessary to maintain time accuracy between blocks. Hence, the time increments of blocks can
be determined directly from Eq. 21 without having to use the constraint in Eq. 22. In this case, the
latest available interface results from the neighboring blocks are employed as shown in Fig. 7.
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FIGURE 6: Exchange of data in spatially variable time-stepping scheme for unsteady Hows.
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FIGURE 7: Exchange of data in spatially variable time-stepping scheme for steady flows.

4.3 Local Residual Criterion for Steady Flows

For steady flow problems, the residuals in each block often reach sufficiently small values at
different times, indicating local convergence to a steady state. Hence, depending on the local flow
conditions, the solution of a block may be stopped as soon as convergence is detected in that
block. This way, additional efficiency can be obtained by minimizing the utilization of the
available computer resources without sacrificing accuracy. It will be shown that for fully
supersonic blocks, convergence of the blocks can be obtained sequentially. For subsonic and
transonic blocks, after the convergence of the blocks is obtained, it is necessary to restart the
solution in all the blocks to check the global convergence to a steady-state solution. Such savings
may be substantial in large-scale problems with varying local flow and grid characteristics.

5. NUMERICAL RESULTS

In this section, we present numerical examples demonstrating applications of the algorithms
discussed above. All computations were done on a network of IBM RS-6000/540 workstations.




14 H.U. AKAY and A. ECER

5.1  Parallel Performance Example

To illustrate the parallel performance of the algorithm, transonic flow around 2 NACAQ0012 airfoil
was considered*. A C-grid with 304 K grid points and 20 blocks was employed. The topology of
solution blocks is shown in Fig. 8. The CPU and elapsed times of 5, 10 and 20 block
subdivisions of this problem are summarized in Fig. 9. Elapsed to CPU time ratios of 1.4, 1.9 and
2.3 were measured for cases with 5, 10 and 20 machines. Differences between the elapsed and CPU
times are attributed to communication loads and delays, and the presence of other processors or
users on the machines. As may be observed, the difference between the CPU and elapsed time gets
larger as the number of processors increases, indicating that larger block sizes yield more
efficiency. These results were obtained by static distribution of the loads over computers with a
single user and a constant time step was used in all blocks.

14 \ 16 18 20
12 13 {15 17 19
11
9
10 7 5 3 1
8/ 6 4 2

FIGURE 8: Block topology for parallel performance example.

5 Machines
10 Machines
B 20 Machines

Time/Step/Machine (Seconds)

CPU Time Elapsed Time

FIGURE 9: Performance of the algorithm for a grid of 304,000 points and 20 solution blocks.
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5.2 Load Balancing Exampie

In this case, a NACA0012 airfoil with 65 K grid points was analyzed by distributing 30 blocks on
5 computers®. Initially six blocks were assigned to each computer. There were also other users on
these processors. As it is shown in Fig. 10, the load balancer checks the status of computers every
n number of steps. When it detects unbalances due to appearance of extraneous processes on the
system, it redistributes the loads accordingly. As may be observed, the algorithm provides a better
performance by periodically checking the loads on the computers and redistributing the loads. The
dashed line in Fig. 10 indicates the elapsed time estimated by the balancer, while the solid line
denotes the actual measured time. The estimate of the elapsed time is made from the size of blocks
and interfaces of a given computational grid.

30

® i
E — 25 —_ 5 More on
kT Protane e
o 4 [oad
9 8 m — C/:’r."l"(‘:]\[;lll Balanced
- D - P lLoad 24%
S n 7] Balanced Faster
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=) 15 l‘)lo Other Faster |
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8]
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Y il 004 0 -7 "
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O .
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<)>: 5 Experimental Time

e T Simulation Time
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FIGURE 10: Timing results of the dynamic load balancing case.
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3.3 Example of Variable Time-Stepping for Steady Flows

To illustrate applications of the block-based variable time-stepping algorithm discussed above, we
have selected a converging-diverging channel geometry with a computational grid of 50X10
elements shown in Fig. 11a. The channel has an inlet to throat area ratio of 2.5, exit to throat area
ratio of 1.5 and total length to throat height ratio of 20. For the purpose of demonstrating the ideas
presented, a four-block subdivision of the channel was considered as shown in Fig. 11b. Since the
steady-state was of interest, the equations in each block were integrated by using locally determined
time steps from Eq. 21 in each block until the average residuals in each block reduced below 107%.
Five distinct flow regimes were considered.

i
i
|

I
111411}

——
=

(a) Computational grid.

! 2 3 4‘_’—]

{b) Block and interface topology.

FIGURE 11: Computational grid and a four-block subdivision of the converging-diverging
channel test case.

5.3.1 Subsonic flow For a uniform inlet Mach number of 0.24 at the inlet and an exit to inlet
pressure ratio of 0.9136, the flow remains completely subsonic throughout the channel as may be
seen in Fig. 12. The number of time steps required for each block to reach a steady-state solution
is summarized in Fig. 13. As it can be observed, due to the subsonic nature of the flow conditions,
all blocks reach the steady state at about the same number of steps. As it will be seen from the
results of the other cases, this case required the highest number of steps for convergence.
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FIGURE 12: Computed Mach number distnibution alang
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FIGURE 13: Convergence of each block to steady state for the subsonic flow case.

5.3.2 Transonic flow with subsonic inlet and exit To create a shock in the downstream of the
channel, a uniform inlet Mach number of 0.24 and an exit to inlet pressure ratio of 0.8435 were
applied as inflow and outflow boundary conditions, respectively. Shown in Fig. 14 is the variation
of Mach number along the upper and lower surfaces of the channel. The number of time steps
needed for each block to reach a steady-state solution is summarized in Fig 15. As may be seen,
the first two blocks converged to the steady state earlier than the last two blocks. Compared to the
single block solution of the problem, it was seen that about 15% less computation was needed.
Fig. 16 illustrates the effect of using variable Ar at each grid point versus using a different Ar in
each block. While the grid point based variations of Ar yield oscillatory residuals and slow the
convergence rate, the block-based Ar variations perform better.
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FIGURE 14: Computed Mach number distribution along lower and upper surfaces of the channel
for the transonic flow case with subsonic inlet and exit.
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FIGURE 15: Convergence of each block to steady-state
for the transonic flow case with subsonic inlet and exit.
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FIGURE 16: Effect of different spatial variations of At.
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3.3.3 Transonic flow with subsonic inlet and supersonic exit For an inlet Mach number of 0.24,
the exit conditions were left free yielding a supersonic exit. Shown in Fig. 17 is the Mach number
variation along the upper and lower wall surfaces. The corresponding convergence requirements of
this problem are shown in Fig. 18. As may be observed, all blocks reach the steady-state after
almost the same number of time steps. The maximum number of steps required for convergence
was considerably less than in the two previous cases.
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FIGURE 17: Computed Mach number distribution along lower and upper surfaces of the channel
for the transonic flow case with subsonic inlet and supersonic exit.
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FIGURE 18: Convergence of each block to steady-state for the transonic flow case
with subsonic inlet and supersonic exit.
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3.3.4 Supersonic flow with supersonic inlet and exit In this case, the inlet Mach number was s
to 2.65 and the exit was left free. The Mach number variation along the upper and lower wa
surfaces is given in Fig. 19. The corresponding convergence requirements of this problem ar
shown in Fig. 20. It is observed that block 1 reaches the steady state much earlier than the other
By stopping the solution of blocks reaching the residual criterion of 707, about 30% savings .
computations were reached. Among the five cases considered here, this case required the lea
number of steps to reach the steady-state.
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FIGURE 19: Computed Mach number distribution along lower and upper surfaces of the channel
for the supersonic flow case with supersonic infet and exit.
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FIGURE 20: Convergence of each block to steady-state for the supersonic flow
case with supersonic inlet and exit.
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5.3.5 Transonic flow with supersonic inlet and subsonic exit In this case, the inlet Mach number
was set to 2.65 and the back-pressure was specified to yield an exit to inlet pressure ratio of 13.72.
The Mach number variation along the upper and lower wall surfaces is given in Fig. 21. The
corresponding convergence requirements of this problem are shown in Fig. 22. As may be
observed, blocks 1 and 2 reach steady state much earlier than the other blocks. By stopping the
solutions in blocks 1 and 2 at earlier stages, a 40% efficiency was achieved. As shown in Fig. 23,
the savings are even more substantial when a mesh of 120, 000 grid points and 20 blocks is used
for the solution of a similar problem. '
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FIGURE 21: Computed Mach number distribution along lower and upper surfaces of the channel
for the transonic tlow case with supersonic inlet and subsonic exit.
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FIGURE 22: Convergence of each block to steady-state for the transonic flow case
with supersonic inlet and subsonic exit.
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FIGURE 23: Convergence of each block to steady-state for a mesh of 12, 000
grid points and 20 blocks.

5.4 Example of Variable Time-Stepping for Unsteady Flows

For illustration of the variable time-stepping algorithm in unsteady flows, we have selected the

same channel geometry of Example 3 and considered a sinusoidal variation of the exit pressure of
Case 5 in the form:

p(t) = po +0.04 p,, sin wx (23)

where @ is the frequency of oscillations. This corresponds to 14 % variations in back-pressure Do
of the case in section 5.3.5. The results of the case with a frequency of 0.02 rad/s are summarized
in Fig. 24. As may be observed, +4% variations in downstream pressure changes the shock
location significantly, while the supersonic region from inlet to throat remains undisturbed. Since
in such unsteady problems it is hecessary t0 maintain the time-accuracy of the solutions, the
constraint in Eq. 22 was used together with Eq. 21 for the selection of time increments in each
block.

For the purpose of studying the efficiency of the variable time-stepping algorithm, we have
also considered two additional grids:

Grid 1: 10,800 grid points, 5 blocks, S machines.

Grid 2: 200,000 grid points, 20 blocks, S machines.

Blocks of nearly equal sizes were distributed to § machines. By using the algorithm described in
Section 4.2, for a block advancing with a smaller time step than its neighbors, the boundary
conditions were determined from the interface data by linear extrapolations in time (Fig. 6). The
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FIGURE 24: Computed Mach number distribution along the lower surface
of the channel for unsteady variations of back-pressure (at t = 1/81th period positions).

CPU and elapsed times were obtained for 5000 steps of the constant time-stepping option. Shown
in Fig. 25 are the comparisons of CPU and elapsed times of constant and variable time-stepping
algorithms for Grid 1. Although, the elapsed times of the variable time-stepping scheme are about
20% of the constant time-stepping scheme, the elapsed times are approximately twice the CPU
times. This is attributed to the significance of communication times compared to block solver
times in small size grids in each machine. The corresponding results for the larger case (Grid 2)
are given in Fig. 26. As may be seen, since the block sizes are larger, the differences between CPU
and elapsed times are insignificant, indicating that the communication times are negligible
compared to the computations performed in the block solvers. The elapsed times of the variable
time-stepping scheme are about 20% of the constant time-stepping scheme in this case too.




24 H.U. AKAY and A. ECER

1800~
1600 B Constant (CPU)
? 1400- EJ Constant (Elapsed)

Variable (CPU)
Variable (Elapsed)

:

aaldaaalaag

£

| P

Machine Number

EXAMPLE 25: Unsteady problem: time comparisons between constant and variable time-stepping
algorithms (10, 800 grid points).
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FIGURE 26: Unsteady problem: time comparisons between constant and variable time-stepping
algorithms (200, 000 grid points).
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6. CONCLUSIONS

In this chapter, we have summarized some of the considerations involved in solving large CFD
problems on network of workstations using explicit solution algorithms. Specificaily, the issues
concerning load balancing, efficiency and time increment restrictions are addressed. The domain
partitioning approach used here allows:

. Ease in programming and data base management.

. Flexibility in load balancing.

. Control in the implementation of block-based vanable time-stepping.

One can observe that the combination of dynamic load balancing and variable time-stepping
schemes can be a powerful tool in computing unsteady flows. Work is in progress in extending the
variable time-stepping algorithm to unsteady external flows, where the benefits may be more
pronounced due to the nature of the variations in local flow conditions and gnid spacing.
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1. INTRODUCTION

As the use of parallel computers is becoming more popular. more attenticn is given to
manage such systems more etficienty. In this paper, several issues related w0 the problem
of load balancing for the solution of parallel CFD problems are discussed. The load
calancing problem is stated in a zeneral fashion for a network of heterogzzeous. muiti-
user computers without detining a specific system. The CFD problem is defined in a
muiti-ciock fashion where each of the data blocks can be of a differen: size and the
olocks ars connec:ed ‘0 each other in any arbirary form. A process is artached w each

olock where different algorithms may ze e'noioved for dirferent biocks. These biocks
may £2 marching in tume at dirsersn ds and communicating with 2ach other at
Jirferant instances.  When the ;rabier:z is detfined in such generai terms. the ne2d for
d\'nar:.ic load baiancing becomes aprarsat. Especiallv. if the CFD preciem is 2 large
one. ¢ te solved 2n many procassars over 2 period of many hours. the load Talancing can

2:d 10 soi\'e some Or the following propiems:
load of 2ach crocsssor of 2 svstem can change dynamically on 2 muli-user svstemu

on2 would like =0 use all the grocessors on the svsiem whenever availabie.

e an unralanced load disiribution mayv cause the calculations for certain iocks o taks
much longer than others. since the slowest block decides the 2lapsed :ime for the
entire proolem. This may occur during different instances of the execution if the
algorithm is dvnamic. i.e.. solution parameters change with the solution.

Based on the above considerations. the load balancing problem was treated by
dvnamicaily adjusting the distribution of the blocks among available procsssors during
the program execution. based on the loading of the svstem. The details of the load
calancing aigorithm was presented previously [1.2]. Here. only the basic steps of the
cynamic load balancing process are listed as follows:

e Otutain reliable computational cost information during the execution of the code.
e Ofrain reliable communication cost information during the execution o: the code.
e Dezrmine the total cost in terms of computation and communication costs of the

exisiung olock distribution on the given system.
o Pa-ocically. re-distribute the blocks to processors to achieve load talancing by
Optimizing the cost function.



[n the present paper. an Euler and Navier-Stokes code, PARC2D, is employed to
demonstrate the basic concepts of dynamic load balancing. This code solves unsteady
flow equations using conservation variables and provides different order Runge-Kutta
time-stepping schemes [3]. Parailel implementation of the explicit time-integration
algorithm involves the following steps:

* Division of the computational grid into a greater numoer of blocks than the number of
available processors with one layer of elements overlapped at inter-block boundaries.

¢ Inwoduction of the block and interface informaton into the data base management
program, GPAR [4].

¢ Distribution of the blocks and associating interfaces among the available processors
by using GPAR.

e Definidon of PARC2D as a block-solver for the solution of the equations inside each
Slock etther tor Euler or Navier-Stokes equations.

e Preparation of an interface solver to communicate with its parent block and its twin
interface. As can be seen irom Figure !, each block automatcally seads information
10 its intertaces after each iteration step. The interfaces will then send information to
their twins whenever necsssarv for the twin to update its parent block. The task
assigned to 2ach block mav not be identical. due to Zactors such as: size of the block.
choice of 2ither Euler vs. Navier-Stokes equations for a particular block. size of the
iime-step for solving each block and the tume-step for communicating berween the
interfaces.  Thus. controlling communications and comrutations in such a truly
Zeterogenecus 2nvironment becomes even more critical.

Trese issues are discussed selow in detail, for a sample problem.
;
'

Processsor 1 Procassor 2

-— - —

9] I°

—— — e —

[]
]
]
[}
]
.
’
.
[
.
t
.
[
.
.
.
L]
[
]
]

Figure 1. Communication between two neightoring blocks and rzlated intertaces (Q2, and

Qg are blocks. [[43 and ['3, are interfaces).

2. INVESTIGATION OF DYNAMIC LOAD BALANCING STRATEGIES

Numerical experiments were chosen to demonstrate some strategies in dynamic load
balancing for managing computer svstems and algorithms. The chosen test problem is a
two-dimensional grid for an inlet with 161,600 grid points as shown in Figure 2. The
flow region is divided into 17 blocks as shown in Figure 3, each with approximately
10.C00 grid points.



Figure 2. Compurtadonal Grid for the Inlet (161,600 nodes).
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2.1. Load Balancing for Variatioas in the System Loading

Ore trpe o load talancing swategy involves conmeiling the computer system. [t may be
a ner2rogensous and muit-user systam. [tis also dvnamic in a sense thar it changes over
alcnz run. The t2stproviem was mun on four procassors over a peried of approximarelv
twelve howrs. Communicaton and cempuration costs for each process were recorded and
a load balancing vas performed ariar approximately every thirty minutes. Figure 4
surmmarizes e rasalts of this compuration for a controlled eavironment. As shown in
Figurs 4a the loacing of certain machines 'was incraased by adding extraneous processes,
whii2 on other mackhines 1o other jots are running. The resgonse of the load balancer is
summarnized n Figure 45, Over 24 load balance cvcles. the elapsed time for each
iterazion vames cervesn 1.3 to £ seconds. The load Salancer recorded the communication
anc compuration oSt cama over a crcle and prediciad the elapsed time for a suggested
loacd balanced distibution. As can be seen from this figure, the prediction is quite
accurate and reducad the 2lapsed time by removing the bortlenecks. Figure 5 illustrates
the same proolem run on an uncontolled environment. Four heavily used processors
were chosen during the davtime oreration. The load balancer responded in a similar
{ashion to a rather irregular loading rzzem of the svstem. [t s interesting to note that in



this case, the totai clapsed ime was not excessive in comparison with the elapsed time for
the dedicated machine.
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2.2. Load Balancing for Heterogeneous Algorithms in Parallel Computing

The second nvze of load balancing strategy involves optimizing the algorithm on a
parallel system and dvnamically load balancing the problem as the algorithm adapts to
the soiution. When running the PARC2D code. one can specifv a time step for each
block from the CZL condition as defined below:

. 2 2
M= CFL/ Max | (U = al&/ e =2k J ®
1 ! ! Re P

where L are the contravariant velocities, a is the speed of sound, Re is the Reynolds
number, p is the viscosity, p is the density, and K/ is the Jacobian matrix. This time



step is calculated for all the grid points inside a block, depending on the local flow
conditions and grid size; the minimum value of all such tme steps is chosen as the time
step for that partcular block. Since, the flow conditions are changing, the time step for
each block changes over the history of a complete run [5].

Variable time-stepping with variable communications is illustrated in Figure 6a for two
neighboring blocks on two different processors. [n this case, Aty, is a global reference
time step for all the blocks. The first block at this instant is operating with a time step of
3Aty;,, while the second biock is running with 2At,;,. The arrows indicate the instances
at which an interface of a block sends a message to its neighbor. Figure 6b shows a non-
optimum soiution. Here, while the computations are performed for each block solver
with its own time step, each block is sending information to its neighbor at every global
tme step.
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Figure 6a. Communication occurs when Figure 60. Communication occurs at the

necessary global tme step.

Figure 7 provides a summarv of the computations with fixed and variable time-
stepping. The reference case is case 1, where the time step is the same for all the blocks.
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Figure 7. Parallel efficiency vs. number of machines.



The equations are solved for 2ach block at each time step and the blocks communicate
with each other after each time step. As can be seen Tom this figure, the parallel
efficiency falls below 20% after 8 processors for the sample problem. Case 2 indicates
the importance of variable ume-stepping that is local to each block. In this case, each
block chooses its own time step for solving the eguations for that block. however
communicates with its neighbors based on the global time step. as described in Figure 6b.
As can be seen from Figure 7, after 6 processors, communication cost becomes the
dominant factor for this case. Case 3 illustrates the ne=d for intelligent communication as
suggested by Figure 6a. In this case. a biock sends a message to its neighbor onlv when
necessary since each block is solved only when necessarv. In this case, the parallel
efficiency can be maintained at a higher level even when the communication cost
becomes dominant. For example, around the leading edge of an airfoil with very fine
grids. one can choose time steps of different order than other blccks and save
computation ime. Also. these blocks may not need to talk 1o their neighoors after each
soiution time step. The computational savings. discussed above. are pursiv due to the
refinements in the use of the aigorithm. When performing paralle! computing. one can
localize the algorithm according o the flow conditions and grids. especiailv for the
soiution of large proolems with compiex grids. [t should be remembered thar all of the
atove cases were load 2alancad to determine the most erficient distribution under given
concitions. These expenments were possible only arter a reliable load balancing
procedure was developed.

The second exampie invoives the solution of Euler and Navier-Stokes solutions at
dirferent biocks. The tume step restriction for viscous computations is niore reswictive
than Euler computations as can be observed from Equation 1. Figure 8 illustrates a case
when the compurations were started by an Euler compurtation for blocks 12-17 and
Navier-Stokes soiution Zor blocks [-11.
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Figure 8. Load balancing due 10 change in solution algorithm.



The numerical integration took approximately 2.1 seconds per time-step. Local time-
stepping was employed for all blocks. The diswibution of the 17 blocks among 4
machines is also shown in the figure. Afterwards, blocks 12-17 were switched to a
Navier-Stokes solver and global fixed time-stepping was employed for all blocks. As can
be seen again from this figure. the load balancer provided a new distribution which
eliminated the bottleneck by removing several processes from machine 2 and loading
machines | and 3. Again in this case, it is shown that an algorithm can be defined and
executed locally on a flow region for improving efficiency. By defining the parallel
computing in a heterogeneous environment, one can employ an algorithm in a most
etficient manner whenever necessary.

The third example relates to the development of algorithms which communicate in a
selective manner. The cost of communication is still the dominant factor in parallel
computing. [tonlv makes sense o develop intelligent interfaces to communicate between
the blocks-processes. Figure 9 shows two blocks in a one-dimensional flow {ield which
are sending messages to 2ach other at dirferent speeds.
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Figure 9. Communication in sutsonic and supersonic flows.

Also bv remembering the 2rid rsquirements for the grid points on an intertace. send and
receives between the two neighzoring blocks can be executed at different time intervals.
The test case is a specific one where most of the flow is supersonic except for blocks 8-
11 which are located insice the inlet. In this case for all supersonic interfaces, one can
send messages only in one dirsction. Figure 10 demonstrates such a case. The time-
integration started where 2ach block was communicating with its neighbors as discussed
above. The distribution of the blocks among the processors is also shown in the figure.
The solution scheme was then modified where the supersonic flow regions the messages
were seat only in one diraction. The load distribution was also modified as shown in this
figure which reduced the 2lapsed time per iteration from 2.5 to 1.8 seconds. This figure
also shows a change in the loading of the system after the 13th balance cycle which was
corrected by the load balance: a block was moved from machine 3 to machine 4.

The above examples illustrate the advantages of parallel computing defined in a general
fashion. Concepts such as heterogeneitv and asynchronous computations in terms of both
algorithms and computer s¥stems can help to improve efficiency of parallel computing.
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Figure 10. Load balancing in subsonic and supersonic flows.
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PARALLELIZATION AND DYNAMIC LOAD BALANCING OF NPARC CODES

N. Gopalaswamy, H.U. Akay. A. Ecer and Y.P. Chien
Computational Fluid Dynamics Laboratory
Purdue School of Engineering and Technology. [UPUIL
Indianapolis. Indiana

Abstract

Parallelization and dynamic load balancing of the 2D and 3D NPARC flow codes of NASA are presented. A previ-
ously developed parallel database package GPAR. and a dynamic load balancer program DLB are used for
both the 2D and 3D versions of NPARC. Performance characteristics of the implemented algorithms in 2D and
3D internal flow configurations are explored. Dynamic load balancing studies are carried out with the two parailel
codes for an engine inlet contiguration. The benchmark cases consist of a 2D case with +4.592 grid points and two
3D cases: one with 30.950 grid points. and the other with 240,000 grid points. The grids are decomposed into solu-
tion blocks and parallel computations are carried out with varying number of processors. The pressure re-
sponse to unsteady perturbations of the inlet temperature is calculated using a variable ume-step approach specifi-
cally developed for parallel computations which takes into account the time-step variations in blocks with opt-
mized communications between the blocks. [t is found that time accuracy is maintined with the benetits of in-
creased speedup with the above approach. Load balancing is found to be effective only in large cases where block
computation costs are more dominant than the communication costs.

Introduction paper we show parallelization of the explicit solvers

] o of the NPARC codes for unsteady flows.
Our current research efforts are aimed at achieving an

etficient computing paradigm on parallel computers. The problem to be solved over a given domain is par-
Parallel computers can be of many types. including allelized by dividing the domain into many sub-do-
MIMD and SIMD computers though our atiention mains, called blocks. and solving the governing equa-
will be primarily focused on MIMD computers. The tions over these blocks. The blocks are connected to
codes chosen for parallelization are the NPARC codes each other throueh the inter-block boundaries. called
(2D and 3D) obtained from NASA LeRC'. Each code interfaces. These blocks are allocated to processors in
lends itself easily to parallelizaton by the method ot the parallel computing environment. and the solution
domain decomposition. A software package called of the problem over the entire domain is achieved by
GPAR? developed earlier in CFD Lab in conjunction solving the governing equations over each block. with
with a dynamic load balancer called DLB’ was used the information exchange between the blocks handled
for parallelization. The non-dimensional form of the by the interfaces.

governing equations for viscous flows are cast in con-

servation form in the following fashion: The NPARC codes (2D and 3D) already use a block-

structured solution approach. It is only necessary to
write the interface communication part. called the "In-

ar  oX , RedX, M terface Solver” to implement parallelization. The in-

terior point algorithm which operates on the points in-

where Q = (p. pu. pv. pw. pEY'. F . are the inviscid side the block. is termed the "Block Solver” and is es-
flux vectors. G, are the viscous flux vectors and Re is sentially unmodified. This block-structured approach
the reference Reynolds number. The conservation is highly suited for parallel computing since each
laws are solved in strong conservation law form after block can possess its own set of parameters which de-
transformation to computational coordinates. Al scribe the flow-field within the block more accurately.
though both implicit and explicit flow solution options instead of using a global set of parameters applicable
exist, the explicit Runge-Kutta time-integration over the whole domain. For instance blocks far away
scheme is used for solution of unsteady flows. In this from no-slip surfaces, in the absence of free-stream

1
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turbulence. can be modeled adequately with the Euler
equations, without the additional expense ot comput-
ing the viscous terms which are negligible. Such an
approach has been used in the parallelization of the
NPARC codes in conjunction with an improved com-
municaton stralegy.

During parallel computations. often bottlenecks occur
due to communication between the blocks over the
network of processors. We expect that with the avail-
ability of larger number of processors over the coming
vears the capability to solve larger problems with
more CPUs will also increase. The communication
cost may become more critical as such developments
occur. Another important objective has also been the
identification and optimization of communicaton cost
in a heterogeneous environment. The following sec-
tions describe the communication strategies and toad
balancing algorithm used to implement efficient ex-
ecution of the NPARC codes.

Variable Time-Stepping Approach

When the flow-field has been decomposed into solu-
tion blocks. we can select a time-step for each block
for computing unsteady flows in two ways. The de-
fault NPARC algorithm picks the most restictive
time-step among all blocks. and all blocks are ad-
vanced in time with this time-step for transient flows.
An approach. called the variable ume-stepping
method®. is considered in this paper. In this approach,
the block time-step is picked as a multiple of the most
restricive tume-step and at the intertaces, and linear
interpolation is carried out between the two time lev-
els to obuain the updated boundary conditions. The
time-step for a particular block is determined from the
CFL condition for stability of the explicit Runge-Kut-
ta time-stepping algorithm from the following expres-
sion:

C

Al = 2)

2
L
Re p I

Max, ’Uj| +a

K

d
where. C is the Courant number. U; are the con-
travariant velocities. a is the speed of sound. and K|
are the metrics of transformation. The viscous correc-

tion includes the reference Reynolds number Re. the
non-dimensional viscosity # and density p.

Y

The time-step is chosen as the minimum of the above
expression over all the grid points ¢. Thus for each
block the most restrictive time-step can be different
depending upon the grid and flow conditions. It has
been usually found that the stability condition also
sausfies the accuracy requirement. Hence. for each
block we can pick a certain multiple of a global mini-
mum time-step which satisfies the stability conditions
tor all blocks.

At =0 Ay 1 j= L2000 N NS (3)
where n, is an integer determined from the CFL con-
dition in Equation (2), n . is @ maximum limit for
n, (typically n ,,. = 5 for ime-accurate solutions. for
steady flows n ,,, is the maximum permissible time-
step ratio in each block). N is the total number of
blocks. Even for blocks which are of equal size. de-
pending on the Alow conditions. the computational ef-
fort required to advance a certain amount in ime can
be different if the time-steps chosen are different.
Some variable time-stepping studies have been carred
out previously.5 and their efficiency investigated.

Communication Strategies

While the Block Solver takes care of the solution of
the ¢rid points inside the block, the Interface Solver
handles communications between the blocks. The In-
terface solver evaluates the information it receives
from the block and decides if it should be sent to the
neighboring interface solver which is located in an-
other processor. The interface solver may also modify
the information betore it sends. For instance, for un-
steady computations for each block we choose a time
step for the computations. This is currently based on
caiculating the Courant numbers for all grid points
and utilizing the critical Courant number inside a
block as a basis for choosing the time step for the par-
ticular block. Each block marches with its own time
step and stores the boundary information into its inter-
face. The interface can store and interpolate the data
and communicate with its neighbor based on the cnt-
cal Courant number of the grid points local to that in-
terface. Another consideration is the magnitude of the
wave speeds across the interface at each direction:
u+a versus u—a which give some preferential di-
rection to the communication process. Thus, the time
step necessary for communication between the inter-
faces does not have to be the same for the interface in
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the upstream block and the interface in the down-
stream block. In summary, the following types of
communication algorithms were employed.

Scheme 1: Same time-steps for blocks and
interfaces

The block time-step and the communication frequen-
¢y of the interfaces belonging to the parent block are
chosen to be identical. However, the blocks can pos-
sess ditferent tme-steps in a variable ume-stepping
scenario. Figure 1 shows the relation between the
block time-stepping and the interface communication
frequency. Each block advances in time with a certain
time-step. chosen to be a multiple of a certain fixed
global minimum time-step.

Solve&Send — - JR S
. J
:: -— _:; Solve&Send
S I
Solve&Send - —_—
_—_: -— ;; Solve&Send
Block 1 Block 2

Figure 1. Interface communication frequency based
on the block time-step.

Since the interface nodes belong to the parent block,
these nodes are also solved for during the block solu-
tion step. Then the interface nodes are updated with
the values at the advanced time-step from the block
and sent to the neighboring interfaces. Also, in order
to solve for the next time-step. the block needs bound-
ary conditions at 1its interfaces from the neighboring
blocks. Hence, it waits till the information is avail-
able for all the interfaces before it proceeds to the
solve for the next time-step. 1If a block proceeds with
a smaller time-step than its neighbor, it receives infor-
mation from the neighboring block which indicates
that it is at a higher time-step, and hence, the slower
block linearly interpolates (in time) the boundary val-
ues from the neighboring block at its current time lev-
el.

3

Scheme 2: Different time-steps for blocks and
interfaces

Since the partal differential equations of fluid me-
chanics are usually very stff. the time-steps needed to
integrate the differential equation are quite small in
order to satisty stability. Since the rest of the solution
develops along the rest of the cigenvalues of the sys-
tem which are smaller than the maximum, which con-
trols stabilitv. sausfying stability also satisfies the re-
quirements of accuracy. Accuracy of a scheme is
achieved when the solution is integrated with a time-
step which contains all the eigenvalues. This observa-
tion. coupled with the frequently encountered scenano
that the block time-step is decided by a relatively
small region of the block. allows us to propose a
scheme in which the interfaces need be updated only
intrequently. for example for a time imterval corre-
sponding to the maximum stable time-step for the in-
terface nodes. For instance. for highly stretched gnds.
the maximum stable time-step at the interfaces present
in the region where the clement lengths are large
could be about 100 times a certain global minimum
time-step. while the block tme-step might be restrict-
ed by regions where the element lengths are very
small. for example close to the wall. Thus. the inter-
faces need be updated only infrequendy relative (o the
block time-step. The elements or nodes in the inter-
face are solved by the block but the interface is itself
updated only at an interval corresponding to the sta-
bility restriction for the interface nodes alone. After
the update, the neighboring interfaces exchange the
information required for the next time step for the
block solution. [t usually happens that the block
ume-step may be such that the interface update inter-
val may not coincide with a block solution ume-step.
In such a case, the solution for the interface nodes is
interpolated from two block solution time-levels, and
then sent to the interface. In case of matching and
overlapping interfaces. the neighboring interface may
not have exactly the same stable time-step as its
neighbor. since the metrics calculated numerically for
one interface may not be the same as that for the
neighbor, and hence the non-dimensional stable tme-
step for one interface may not be the same as its
neighbor. Local gnd stretching effects also play a part
in yielding ditfering stable time-steps for neighboring
interfaces. In such a situaton. the interface which is
at an advanced time-step. sends the information first.
and then waits ull the other interface catches up or
passes. The slower interface interpolates the values at
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the boundary. from the solution received previously
and the information currendy available at the higher
time-level for the neighboring interface. Figure 2 il-
lustrates the strategy tollowed. This strategy results in
less communication compared to the previous case
which may yield savings in the elapsed time for com-
putation of the overall problem.

Linear Interpolation
(;’5’ 1

At

Biock 1 Block 2

Figure 2. Interface communication trequency based
on the local stability condituon for the
interface nodes (A, = block time-step, Az
= interface ume-step).

Scheme 3: Interface time-steps based on interface
characteristic speeds

A communication frequency based on the local char-
acteristic speeds in the interface region has also been
proposed. Figure 3 shows a simple one dimensional
examnple of the above discussion:

u+a
M

AX

Figure 3. Communication between blocks based on
local characterisucs.

As can be seen from the figure. if a block were com-

4

pletely supersonic, then from the direction of the char-
acteristics or cigenvalues, it is not necessary for the
block downstream to communicate with the upstream
biock. However. the upstream block must necessarily
send information downstream. If the blocks were sub-
sonic, then the communication trequency between the
blocks would depend on the following ratios:

Ax
Al =
-
Ax
Aty = (4
a-—u
Ar a—u
L= ta-w>0
A, u+d

where Ax is the local element length in the interface
region, and « is the velocity of the tluid and a is the
local speed of sound. If the flow were completely su-
personic, then a—-u < 0. and hence no messages
would be sent upstream to the neighboring interface.
Thus Af; — oo and there would be a significant re-
duction in the communication. The block solves for
the solution vanables on the interface nodes. The in-
terface nodes are updated with the block solution vari-
ables at a time interval corresponding to the commu-
nication frequency calculated from Equations (4).
Since the block time-step may be such that the time
interval at which to update the interface may not coin-
cide exactly with a block solution tume-step, two
block solution levels are stored. and the interface 1s
updated with a linearly interpolated value from the
two solution levels. Similarly. when an interface re-
ceives information. it may not coincide with the block
solution time-level, and hence the interface solution
variables are stored over two time levels. This way
the solution variables for the block boundaries can be
obtained by an extrapolation of the interface solution
variables stored over the two previous time-levels (in-
terface time-steps or time-levels). Also. the solution
may be developing, which means that a shock initially
located in a particular block may start moving up-
stream as the solution progresses and eventually cross
over into a block which was completely supersonic.
Thus, if communication were completely cut-off from
the downstream block to the upstream block. the
shock would be stalled in the downstream block for
the whole duration of the solution yielding a tinal so-
lution which would be incorrect. Hence, even if the
interface nodes currently appear to have supersonic
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flow. an upstream communication is sull enabled as a
certain multiple of the block time-step. in order to al-
low a developing flow to let a shock move upstream
across blocks if needed. A brief illustration of the
communication strategy is shown in Figure 4.

For multu-dimensional lows. we can extend the above
reasoning by considering each direction separately.
The physical coordinates map to the computational
coordinates (£, n,¢). Since the interfaces are usually
aligned along a constant index or computational coor-
dinate, the contravaniant velocities (U. V. W) along
each computational coordinate direction should be
considered. Along each interface. only one con-
travariant velocity will exist in a direction crossing the
interface. the other two are parallel since they are mu-
tually orthogonal to each other. For example. if there
is an interface along a constant £ direction. only U ex-
ists in a direction crossing the interface. the other two
contravariant velocities V and W are parallel to this
interface.

(3

At

Aty U +adi+ i+

(6)

where the pair of interfaces are denoted by the sub-
scripts { and j. The same approach is used for inter-
faces aligned along constant 7 and constant & direc-
tions.

At =

u+a

frequency between the
local characteristic

Figure 4. Communication
interfaces based on
speeds.

5

Variable time-stepping for cach block and interface
has been implemented in a parallel environment. For
cases with variations in grid size and flow conditons.
computational efficiency can be improved significant-
ly.

L.oad Balancing

Following the above discussion. the objective is to re-
duce both the computation and the communication
cost by making parallel computing opumally suited to
local conditions. Apart from the algorithmic consid-
erations, one also needs to consider the performance
of the overall computation itself in terms of the pro-
cessor speeds and communication speeds. Botte-
necks can also arise due to the computational load of
the processors and communication times between the
processors. Computing on a network of workstations
or on dedicated multi-processor systems has its own
set of issues to be addressed in order to obtain maxi-
mum efficiency, or in other words. a solution in the
shortest possible time for a given set of resources.
Obuaining maximum efficiency leads to the necessity
of load balancing, or balancing the computational load
on each processor during the execution. For large
problems, it is typical to have a greater number of
blocks compared to the number of processors or ma-
chines. As an example. for the computation of a
three-dimensional wing section which has been de-
composed into 150 blocks, there may be only 10 ma-
chines available. [n many cases. it is advantageous (o
decompose the problem into more blocks than the
number of machines available, since load balancing
can be used to alleviate bottlenecks due to a portion of
the domain, or the processor itself.

The load balancing program or the "balancer” needs
statistics about the execution of the application code
in terms of the computational and communication cost
for each block on every processor. and also the num-
ber of extraneous processes on those processors. This
is then factored into calculating the cost tunction. For
example, the cost of computation can vary due 1o a
change in the solution algorithm. or due to an increase
in extraneous processes started or stopped by other
users. The response to the two causes is different. A
program called "Ptrack” (process tracker). executes
concurrently on each processor on which the blocks
are executing, and monitors the extraneous process
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load on the respective processors. The execuuion sce-
nario is illustrated in Figure 3.

APPLICATION
PROGRAM
|
BALANCER
GPAR I
|
i
PROCESS
TRACKER
PVM
APPL

Figure 5. Balancing of the application program.

Load balancing can be of two types. static or dynamic
load balancing. In static load balancing. the blocks
and interfaces are allocated to the machines (or pro-
cessors) in a fashion that the resulting overall compu-
tational speed of the problem achieves a maximum.
Factors which come into consideration here are the
block and interface sizes. proximity of blocks and in-
terfaces. speed of the individual machines. and the
communication speed and bandwidth of the network.
all or some of which can vary. In dynamic load bal-
ancing, this initial distribution can change according
to external factors such as extraneous processes added
to or removed from the machines during computation.
and also due to changes in computational speed of the
blocks and interfaces themselves on the machines due
to changes in the solution algorithm or the solution
behavior. In a heterogeneous computing environment.
load balancing becomes extremely important if effi-
cient utifization of the given resources is desired.

The load balancing scheme developed at CFD Lab 1s
based on the greedy algorithm®, which tries to mini-
mize the total cost of executing all the blocks. The
formulation of the cost function can be described in
the following way:

6

i. Let the computation cost of processing block ¢
on a processor j be ¢/. Here. i can take values
from 1 to n where n is the number of blocks
executing, and j can take values from | to P
where P is the total number of processors the
blocks are executing on.

ii. Let the communication cost of sending inter-
face data from a processor j to its neighboring
interface be b*. which may be on a different
processor &.

iti. The computation cost of executing blocks on a
computer j is also influenced by the waiting
time W, for each block i. since it has to wait o
receive the interface information. The total
cost of computation on a processor j is:

Cl=%(c!+ b+ W) (7

k - . - .
where b!" is the communication cost required
per block i on processor j.

The load distribution problem then reduces o mini-
mizing the maximum of the above computaton costs
among all the blocks. since it is the slowest block
which is the bottleneck. Hence if C = max(C') then
C should be minimized to achieve load balancing.
The greedy algorithm is used to minimize C, the com-
putational work for that being equal to O(nP*) where
n is the number of data blocks. and P is the number of
processors being used.

The computation and communicalion cost must be
computed in order to serve as the input to the load
balancing algorithm. This involves placing some
time-stamps inside the application program to obtain
the time spent by the application program in comput-
ing the data block and the time spent by the applica-
tion program waiting to receive information and the
time to send the required information. Based on this
information, the cost function C’ for each processor is
catculated, and the data blocks i are redistributed
among the processors if necessary to balance the com-
putational toad. This process is done periodically dur-
ing the execution of the code for every specified inter-
val, called the balance cycle. to monitor the progress
of the computation. Typical balance cycles are in the
order of 100-500 time-steps.
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The NPARC codes have been enabled for load balanc-
ing by means of certain calls to the DLB library func-
tions which monitor the time spent in communication
and computation in terms of both CPU and elapsed
time. Informauton about the number of bytes ex-
changed between processors is also recorded. which is
factored into the calculation of the communication
cost.

Test Czises Considered

Three test cases were considered. All the grids for the
following test cases were supplied by NASA LeRC.
The Eulerfinviscid version of the NPARC code was
used to compute the test cases with the 3-stage ver-
sion of the Pseudo Runge-Kutta tme-stepping
scheme. The plane of the axisymmetric inlet is shown
in Figure 6 together with the steady-state solution
from which perturbation is started. The 17-block divi-
sion used for this 2D/axisymmetric case is also shown
on the same figure.

Density Contours

i | LA

{

M=0.3

Station 8 Station 10

i ) 2 3 4 s

Figure 6. Steady-state density contours for the
axisymmetric inlet.

Test Case 1:

A two-dimensional case with 4,592 grid points was
used to study the pressure response o a sinusoidal
temperature perturbation with a frequency of 225 Hz.
The grid was divided into 17 blocks and the number
of machines was varied from 1 to 8. The inlet Mach
number was 2.5 and the exit was subsonic with a
Mach number of 0.3. The exit boundary condition is
based on a scheme developed previously for NPARC’.
The reference inlet pressure was 117.8 Ib/ft*, and the

reference inlet temperature was 395 Rankine. The
cowl-tip radius of the inlet, Re=18.61 inches. was
used to non-dimensionalize the lengths. The ampli-
tude of the sinusoidal temperature perturbation was
5% of the mean value (395 Rankine). The pressure
response was measured at two locations, X/Rc=4.08
and X/Rc¢=3.01. downstream of the normal shock in
the diverging section of the inlet.

Test Case 2:

A three-dimensional case with 50.950 grid points cor-
responding to a 60 degree sector of the axisymmetnc
inlet was divided into 16 blocks and subjected to the
same inlet temperatre perturbation with a sinusoidal
frequency of 225 Hz and the pressure response stud-
ied. The inlet Mach number was 2.5 and the subsonic
exit had a Mach number of 0.3.

Test Case 3:

A three-dimensional case with 240,000 grid points
comresponding to a 360 degree O-grid of the axisym-
metric inlet was divided into 20 blocks and a steady
state solution was sought for an inlet Mach number of
2.5 and subsonic exit Mach number of 0.3 as shown in
Figure 7.

Figure 7. Three-dimensional grid for Test Case 3
with 240,000 grid points.

For each of the above test cases. the following strate-
gies were considered to investigate the performance of
the new algorithms.
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Default Scheme

The base case is chosen to be global time-stepping
with the same time-step for all the blocks. A time-
step of 6 us is chosen as the global time-step and
computations are performed for approximately 3000
steps till a periodic response is achieved. This corre-
sponds to an interval of approximately 0.035 seconds.
Then. the same case is run for all three grids and this
time dynamic load balancing is enabled and the block
distribution after load balancing. and the resultant
clapsed time and CPU ume is recorded.

Scheme 1

This time, the variable time-stepping option is en-
abled, in which each block picks a certain multiple of
the global time-step depending upon the critcal
Courant number inside the block. The initial distribu-
tion of the blocks is the same as obtained from the
previous step with constant global time-stepping. The
interfaces communicate with their neighbors at each
block solution step as outlines in Figure 1. Again the
elapsed time and CPU ume are recorded for this case
with and without load balancing enabled. The pres-
sure response is plotted for the 2 stations with time,
and compared to the base case.

Scheme 2

Variable time-stepping in addition to interface com-
munication which takes place at an interval corre-
sponding to the critical Courant number for the inter-
face nodes is studied. The communication scheme
used is shown in Figure 2. The elapsed time and CPU
time are recorded and the pressure response plotted
with tme. Load balancing is ¢nabled and the same
case is rerun with all parameters recorded.

Scheme 3

Finally, variable time-stepping in addition to interface
communication which takes place according to the
characteristic speeds of the solution variables in the
interface nodes is investigated. This corresponds to
the communication scheme shown in Figure 4. As be-
fore, all parameters are recorded for cases with and
without load balancing.

Results

The timing informaton for the cases considered is
presented in the form of speedup and efficiency which
are defined in the next two equauons.

_ Elapsed Time with 1 Machine (Default)

n A N (8
Elapsed Time with n Machines )

Sn
Efficiency = o (9

where S, is the speedup with n machines. The total
elapsed time for solving the test case using the default
communication scheme in the NPARC codes is used
as a basis for comparison when speedup is calculated.

Speedup of various communication schemes

6 - .
Default —— /,QJ
5 Scheme 1 ——¢— = |
Scheme 2 - \/’ |
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Figure 8. Speedup for the 2-D grid with 4.592 nodes
divided into 17 blocks.

Efficiencies of various communication schemes
4 T v
Default ——
3.5} Scheme1 —»—|
3 || Scheme 2 -1 ‘
Scheme 3 —8—
25 ¢ 4
X
2 L™
1.5 ¢
1
g
05+t
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Efficiency
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Figure 9. Efficiency for the 2-D grid with 4.592
nodes divided into 17 blocks.

From the results of the 2D case. it is found that it is
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highiy communication bound. and load balancing
vields little improvement in etficiency. Hence, the
load balanced computational speedup is not displayed
here. Also, the choice of communication algorithm
makes a significant difference among the vanable
time-stepping cases. Only the case with Scheme 3
shows linear speedup as the number of machines in-
creases.

Speedup for various communication schemes

Speedup

1 2 3 4 5 6 7

Number of Machines

Default —— Default (DLB) —a—
Scheme | —e— Scheme | \DLBY —e—
Scheme 2 —a— Scheme 2 (DLB) ——
Scheme 3 —— Scheme 3 (DLB) —w—

Figure 10. Speedup for the 3-D grid with 50.950
nodes divided into 16 blocks.

Efficiency of various communication schemes
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Figure 11. Efficiency for the 3-D grid with 50.950
nodes divided into 16 blocks.
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Speedup for various communication schemes

25 \

Speedup

Number of Machines

Default —=— Default (DLB) —a—
Scheme | ——e— Scheme 1 (DLB) —e—
Scheme 2 —a— Scheme 2 (DLB) —a—
Scheme 3 —— Scheme 3 (DLB) —w—

Figure 12. Speedup for the 3-D grid with 240,000
nodes divided into 20 blocks.

Efficiency of various communication schemes

Efticiency

Number of Machines

Default —g— Default (DLB) —a—
Scheme | —e— Scheme | (DLB) —o—
Scheme 2 —a— Scheme 2 (DLB) —a—
Scheme 3 —+— Scheme 3 (DLB) —w—

Figure 13. Efficiency for the 3-D grid with 240.000
nodes divided into 20 blocks.

The 3D cases show a much higher speedup as number
of machines increases compared to the 2D case. Also.
the load balancing improves the speedup and efficien-
¢y by an additional 15-25 percent for most cases.

Next, the pressure response to the sinusoidal tempera-
ture perturbation is plotted for the two monitoring sta-
tions. As can be seen from the figures, all three
schemes preserve good time-accuracy with respect to
the globally uniform time-stepping case.
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Figure 14. Pressure  response  at  station 8
(X/Rc=4.08) to a 5% sinusoidal inlet
temperature perturbation.
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Figure 15. Pressure  response at station 10
(X/Rc=5.01) to a 5% sinusoidal inlet
temperature perturbation.

Conclusions

The 2D/axisymmetric and 3D versions of NPARC
have been parallelized and enabled for dynamic load
balancing. A variable time-stepping block solution al-
gorithm is implemented in addition to various com-
munication schemes and their efficiency is explored
with the help of three test cases. The combination of
the variable time-stepping approach and the commu-
nication schemes are shown to be time accurate for
unsteady computations. Significant savings in total
elapsed time can be achieved with the developed vari-
able time-stepping schemes when the interface time-
steps and characteristic speeds are considered. The
dynamic load balancing provides additional efficiency
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when the problem size increases. The variable time-
stepping tools introduced here can significantly reduce
the cost of solving unsteady perturbation problems
with NPARC codes. The reduction in total elapsed
times is 4-5 times than in constant time-stepping algo-
rithm when large size problems are solved.
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INTRODUCTION

Parallel computaton of CFD problems involves utlization of many processors to solve a
single problem. The efficiency of a parallel scheme generally depends on allocating the
data on individual processors and managing the communication in an efficient manner
since one has to be aware of both computation and communication costs. The problem is
usually simplified into an homogenous form by assuming that the operations on each
processor are identical and the load is distributed evenly among identical processors. In
computational fluid dynamics, this is similar to solving a problem on a square grid where
the difference operator, the solution scheme, the grid size and the machines are the same
for all processes. In this case, the load balancing problem is equivalent to dividing a
given problem into a given number of equal tasks. In the solution of complex three-
dimensional problems, however, the issues are quite different. The grid spacing around
an aircraft may vary several orders of magnitude with appropriate saetching. To pick up
a boundary laver or the leading edge separation, much finer grids may be required in
comparison with the inviscid freestream. The stability requirements for computing with
such grids may vary considerably over the entre flow field. Time-accurate solutions of
such problems also require a wide range of time-integration steps since the unsteadiness
may vary both in time and space. When the problem is described in the above fashion,
the definidon of parallel computing has to be generalized since the allocation of the data
to individual processors depends on the resources available on each processor, as well as
the level of computations required for the particular subset of data. If the subset is
defined as a collection of grid points, the local refinement of the grid and the local
characterisacs of the flow dictate the allocation of such data to an individual processor.

While for serial algorithms, the elapsed time is simply a summation of all computational
costs, for parallel algorithms the elapsed time is contolled by the bottlenecks due to
information exchange between the processes. Thus, the efficiency of an algorithm
strongly relates to detectng and eliminating bottlenecks. For this reason, load balancing
becomes critical for solving large CFD problems. In order to propose solutions to these

- problems, the present authors have devised a dynamic load balancing technique which

dynamically takes into account: 1) computational effort in each processor, 2) inter-
communication loads, 3) presence of other users on each processor, and then periodically
redistributes the loads for better efficiency as needed {1,2]. In this paper, we summarize
our recent experiences with the coupling of explicit CFD algorithms and a dynamic load
balancing strategy on network of computers.

PARALLEL CFD ALGORITHMS

For the parallel CFD algorithms we have studied so far, the computational domain is
divided into a number of subdomains called solution blocks [3,4]. Each block consists of



a set of grid points and their connectivity. Also, each block is associated with the
neighboring blocks through a group of grid points called interfaces. An interface
includes all the grid points required to define the connection of two neighboring blocks.
An interface is duplicated and stored on both processors where the two neighboring
blocks are stored (Figure 1). For pseudo tme-integrations of the nonlinear set of
equations in steady flows or real-time integrations in unsteady flows, the solution blocks
are solved using an explicit scheme. Any computations on a block are communicated to
its interfaces. An interface decides when to communicate with its identical twin on the
other block. When an interface receives information from its twin, it updates the block it
is artached to. Thus, during the computation process two basic decisions are made: 1)
when to compute in each block and 2) when to transfer data from one interface to its twin.
In general, each block and interface will have different requirements depending on the
local flow conditons and grid refinement.

The algorithms thus described are very suitable for parallel computations on distributed
mult-user systems such as workstation networks. For parallelization we have developed
a grid-based parallel database program, GPAR [3,4], which utlizes portable parallel
library routines such as PYM [5] and APPL [6]. Using GPAR, a CFD user-programmer
needs to code only a block solver and an interface solver without being concerned with
parallel computing primitives such as send, receive, wait, etc. This database program and
its applications were presented elsewhere, see e.g., [3,4,7]. Depending on the size of the
problem and the availability of computers, the solution blocks are typically distributed to
several processors on the network. Each solution block is treated as a separate process
while each processor may handle one or more of such processes.

Our experience with such systems has shown that the total elapsed tme for these
calculatons is a function of:

Size of each solution block.

Size and number of interfaces.

Balance in size of solution blocks and interfaces.

Number of times the exchange of interface information is nesded.

Speed and memory of each machine and non-heterogeneity of the system.
Change of loading on each machine at a given tme.

A il S

When studied in detail, it becomes apparent that the above problem is not static. The
computer resources may vary over a computer run of many hours. Also, the
computational requirements for a block may change due to changes in local flow
conditons.

DYNAMIC LOAD BALANCING

Although balancing the size of solution blocks and interfaces is usually under the control
of a user, for complicated geometries this may not be readily achieved and may require
extra amount of effort. What is not at user's control in multi-user/multi-task
environments is the change of loading on each machine during executions. To alleviate
such problems, we developed a high-level load balancer which is intrinsically connected
to the database program GPAR and the corresponding CFD application code. The load
balancer computes the computational cost of block and interface solvers, including the
communication costs, and distributes the load into available computers. It also
periodically checks the loading of each processor and redistributes the loads if significant
load unbalances are detected during the parallel computations due to change in loading
status of processors {1,2]. The following steps are to be performed when a parallel CFD
code is used with the present dynamic load balancing algorithm:



1. A computational grid is generated in the form of blocks and interfaces and stored
in the database.

Each block is assigned to a block solver which solves the equations for each block
and also updates its interfaces. _

Each interface is assigned to an interface solver which sends the information to its
twin interface which belongs to the neighboring block (Figure 1).

Blocks are distributed among the existing processors along with their respective
interfaces.

Program is executed and computation time of each block and execution time of
each interface are recorded.

Based on the recorded data, a load balancing is performed to distribute the given
problem to available processors in a most efficient manner.

Steps 4 through 7 are repeated periodically to include the changes in the problem,
the solution algorithm and computer conditions.

A A o S

NUMERICAL INTEGRATIONS IN TIME

In this paper, an explicit time integration technique is chosen to demonstrate the concept
of load balancing. The stability requirements of such schemes are usually defined in
terms of a CFL number. For example, for the scheme to be stable, the limiting time step
is directly proportional to the element size and inversely proportional to the local
velocity. Hence, the flow regions with denser grid distributions and higher velocities are
severely penalized. This severe restriction makes the solution of large problems
prohibitively time-consuming even after parallelization. However, it is possible to further
improve the computational efficiency by exploiting the parallel data structure of the
proposed algorithms as described in the following sections.

Block-Based Variable Time-Stepping Strategies

If a group of grid points is identified as a block, the CFL condition (i.¢., Courant number)
suggests that the ume integration step for that block is dictated by the grid point with the
highest CFL number in that block. As we divide the entire grid into a larger number of
blocks, we have the opportunity to utlize the most efficient time step for each region.
For instance, we do not wish the leading edge of an airfoil to dictate the integration time
step for the entre problem. The flow regions with denser grid distributions and high
velocites are severely penalized. Although increasing the number of blocks decreases
the block solver times, it increases the relative importance of communication imes. To
overcome this difficulty, we proposed using time-steps which vary with time based on a
rule in each block independently to meet the condition set by the CFL number. While the
blocks advance in time with different ime steps decided by the Courant number, interface
information exchange is made whenever needed and the missing information is calculated
by linear interpolations within a time step. The rule used in selecting the time steps is
based on using a minimum preset value Ar,;, and an integer & such that the time step

used in each block m at a time step 7 is calculated from:
-n _ n
A, = kAt < At

where, in each block the variable time step Az, is calculated from the CFL condition.

An upper limit on the integer multiplier k is needed (e.g., 5) to minimize the interpolation
errors at the interfaces. Exchange of interface information selectively only when needed,

instead of at every At,,;,, significantly improves the efficiency of overall calculations.



Zonal Solution Strategies

One may also use a zonal approach for which a complete Navier-Stokes solver is used
only at selected flow regions for efficiency purposes. Some blocks may be treated as
inviscid while others as viscous. Thus, solution time for each block may not only be a
function of number of grid points but also the solution algorithm utilized for the specific
block. Based on the above considerations, one can define a time step locally for each
block and solver for improving efficiency. Such a procedure may also be extended to
zones with potential, Euler and Navier-Stokes solvers combined with the load balancer.

Interface-Based Variable Communication Strategies

Since the communication cost is still the critical factor in parallel computing, one can
obtain considerable efficiency by selectively sending the interface information based on
the direction of the flow at the interfaces. For instance, if the flow is supersonic the
upstream block sends messages to downstream but does not need information from the
downstream block. When the flow is subsonic, the speed and hence the frequency of
information exchange are different in upstweam and downstream directions. This way,
one can optimize communicaton costs by studying the flow conditions and grids at the
interfaces. Again this process is dynamic and depends on the local flow conditions.

BENCHMARK STUDIES

The problem considered in this paper is the flow through an axisymmetric engine inlet as
shown in Figure 2 (see e.g., Chung [8]), where we divided the flow region into seventeen
blocks. Each block contains between 8,000 and 10,000 grid points. The flow is
supersonic in most regions except in blocks 9-11. The PARC2D unsteady flow code [9],
which was parallelized via GPAR, was used for the test cases.

Example | Load Balancing

This case illustrates the basic functdons of the load balancing program. Shown in Figure
3 is a typical load balancing sequence which may occur in a multi-user heterogeneous
environment. Inidally seventeen blocks were distributed among four machines. The
loads were monitored by the load balancing program periodically at each cycle of
computations, where one cycle in this case is equal to 800 time steps of unsteady
integrations. As may be observed, a sudden change in the loading of one of the machines
was detected at seventh balancing cycle, after which the load balancer redistributed the
loads for a better performance. The new distribution was dynamically determined from
the measured computational and communication costs and the cost calculation formulae
of the balancing program. Similar situations happen at later cycles too. Each ume the
load balancer program corrects the problem.

Example 2 Zonal Approach

This case illustrates the effects of zonal approach where certain blocks in the flow zone
are switched from an Euler to Navier-Stokes solver (blocks 12-17). As may be observed
from Figure 4, following the switch of the solvers at balancing cycle 6, the load balancer
improves the efficiency by redistributing the solution blocks.

Example 3 Interface-Based Variable Communication

This case illustrates the obtained savings in elapsed time when communications are made



selectively at supersonic interfaces. Figure 6 shows the savings when the information in
supersonic blocks is passed only from upstream to downstream direction after the
balancing cycle 5. It is to be noted that an unexpected load increase on the system which
happened at cycle thirteen was later corrected by the load balancer.

Example 4 Block-Based Variable Time-Stepping

This case illustrates the effects of the block-based variable time-stepping algorithm and
communication costs. Shown in Figure 6 are the efficiency curves of variable time-
stepping algorithm compared with the constant time-stepping. While there is a severe
drop in efficiency after seven machines are used in the case of constant time-stepping, the
same drop in efficiency takes place only after fourteen machines when the variable time-
stepping plus variable communication algorithms are used.
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Abstract

Distributed computing on a network of computer workstations is being considered as a practical tool for parallel CFD
applications. Presently, workstations are commonly arranged in the dedicated. single-user mode for executing such computations.
Since workstations are generally employed in a multi-user environment. running the workstations in the dedicated mode causes
scheduling problems for system administrators and inconvenience to other users. A methodology is presented in this paper for
dynamic balancing of the computation load on a network of multi-user computers for parallel computing applications. In order to
distribute the computation load in a multi-user environment. it becomes necessary to determine the effective speed of a multi-user
workstation to a parallel application. In the present approach, it was assumed that (i) multi-user and multi-tasking networked
computers may have different computation speeds. (ii) application data can be divided into many small data blocks with possibly
different sizes. (iii) a process is assigned to each biock. and (iv) the number of computers is much less than the number of
processes. The developed dynamic load balancing procedure uses the greedy method for optimizing computation load
distribution. Due to dvnamic changes of the computer loads in a multi-user and multi-tasking environment. the loads on
computers are periodically examined and parallel application processes may be re-distributed to reduce the computation time.
The developed method has been tested on two computer clusters and its applicability has been demonstrated for two case studies.

1. Introduction

Solution of large CFD problems requires access to large computer systems. In the past. supercompu-
ters were utilized to solve such problems where vectorizing was the main tool for speed improvements.
Presently, parallel computers are being considered to treat such problems in terms of obtaining higher
computational speeds and solving larger problems. The development of parallel computers during the
last decade has progressed mostly towards developing tightly coupled systems. Whether a parallel
computer is configured as a SIMD or MIMD, an expandable, yet fixed configuration. was proposed.
This resulted in the development of computers with many processors which communicate with each
other in a prescribed fashion [1.2]. These developments have been mostly of an experimental nature
and parallel supercomputers are only been realized during that last couple of years [3]. Access to 512 or
1024 processors are being made possible to researchers to solve large CFD problems. The term
‘massively parallel’ is being realized as such systems are being assembled.

After experimenting with the present parallel supercomputers, one can make several observations:

e These computers have been developed up to a level exceeding the performance of older
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supercomputers. It seems possible that much larger systems can be put together at a reduced cost
in the near future.

e Although attempts are being made to provide a virtual environment where the communication
between different processors is not visible to the user. the communication cost is still an important
factor for most of the applications.

® Many existing software packages are not suitable to work in a paralle! environment. Usually it is
costly to convert or there is not sufficient interest to justifv the cost of conversion.

e Since these machines are still at the development stage, changes are being made rather rapidly.
Therefore. only a few specific production codes are running on these machines at this time.

Also. during the last decade the development of UNIX workstations has attracted considerable
attention. A large amount of scientific computing previously performed on main frames has been
shifted to workstations. The wide popularity of such hardware has driven the costs down. Many
organizations have already purchased a number of workstations which have brought forward the
possibility of a network of workstations as a cost effective means to parallel computing. The use of
distributed workstations for parallel computing has drawn significant interest from the research
community. mainly due to the potential for high performance. It has also drawn interest from the
management community, which looks to this new technology as a means to significantly reduce
computing costs. These different objectives are causing some confusion.

The ‘performance’ seekers are driving the dedicated cluster approach. This has promoted in-
vestigations into more efficient communication software and high performance networks. Performance
seekers will try anything to acquire more computing power. They will even write their own load-
balancing schemes (static or dynamic) into their codes. The ‘efficiency’ seekers are driving the
scheduling/load balancing software development. This software is meant to keep as many machines as
possible as busy as possible [4]. Traditionally. this has been done through scheduling multiple
single-processor jobs. The situation is complicated with the addition of parallel jobs. Scheduling/load
balancing software primarily meant to ‘capture idle cycles' could conflict with applications developed to
achieve high performance. However, some of the load balancing techniques built into this software
(task migration. checkpointing) could be useful to applications seeking performance. The key is to have
schedulers/load balancers which are flexible enough to recognize and support both situations. The
distributed network could be viewed as multiple “clusters’. where a cluster could consist of only a single
workstation or multiple workstations.

A network of loosely-coupled. multi-user workstations for solving large problems requires answers to
further questions. If one compares a network of loosely coupled workstations to existing parallel
machines. one can make the following observations:

® A user can access to much larger memory on the existing workstations (256 to 512 Mbytes per
processor).

e The communication between the workstations is still being improved at this time.

® A system of loosely-coupled networked workstations has more possibilities in terms of expandabili-
ty, yet it is much more difficult to schedule and load balance parallel applications than a
tightly-coupled parallel machine.

e A system of loosely coupled networked workstations is dynamic. The number of available
workstations and their load may change day-to-day.

e The network of workstations is suitable for a multi-user environment. The variety of resources on
such a system enables efficient utilization by several users simultaneously. This is quite different to
users sharing a single computer which was the supercomputing environment of the last two
decades.

e Software development on networked workstations prevents the software package from becoming
machine dependent. The present parallel supercomputers require specific software tools for
improving the efficiency of their particular systems.

Based on the considerations listed above, our work on parallel computing has been directed towards
the utilization of a network of loosely coupled workstations. We consider a network of multi-user UNIX
workstations as our basic system. For solving large CFD problems on such a system, we try to answer

the following questions:
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e How can we distribute a large CFD problem over a network when sharing resources with other

users?
e How can we utilize a network of heterogenous UNIX workstations with different brands and

models?
e How do we develop parallel algorithms and computer codes without knowing the details of such a

complicated computer network?

e How can we maintain ‘high performance computing’ in such an environment?

In this paper, we describe a dynamic computer load balancing methodology suitable for a network of
loosely-coupled workstations. In order to maximize the utilization of computing power of the network,
we assume that the network supports the multi-user environment. In order to support the load
balancing tasks for a variety of parallel. portable CFD application codes, we do not require the detailed
knowledge of the parallel code for load balancing. The dvnamic load balancing is based on the on-line
performance measurements of a given CFD code on existing network of heterogenous workstations. By
utilizing the developed methodology. one can ensure the scalability, portability and the efficiency of a
parallel algorithm on a given network.

2. Background

One can develop parallel CFD algorithms by parallelizing the access to data at different levels. Our
experience with MIMD machines has been based on parallelizing the CFD algorithm and duplicating
the same algorithm on different processors [5]. In parallel CFD, one simple strategy is to divide the
computational grid into a series of blocks and perform parallel computations on each of these blocks.
Again, a simple approach is to divide the data into the same number of blocks as the number of
computers or processors used for processing such data. Examples of blocking the data to fit a given
number of processors can be found in literature [6-8]. Computer load balancing using these methods is
achieved by varying the sizes of the data blocks. These methods simplify the load balancing problem by
assuming that there are no restrictions on how the data can be divided into blocks and the computing
environment is static. However, they may become complicated when there are restrictions imposed on
data blocking and the computers are in the multi-user mode.

To develop a general yet efficient computational environment for parallel CFD on a network of
multi-user workstations, we proposed to arrange the data into a large number of data blocks where each
block corresponds to an assembly of grid points. We first developed the methodology for managing such
data efficiently on a network [9]. We then defined load balancing in terms of optimum allocation of
these blocks to different processors where the number of blocks exceeds the number of processors [10].
In this paper, we extend this discussion to dynamic load balancing. To introduce further details of the
procedure, we formulate the problem based on the following assumptions:

(1) A set of m multi-tasking, multi-user networked computers are used.

(2) Computation speeds of computers may be different.

(3) There is a program (grid divider) to divide the original data into a set of n small data blocks
D={d|i=1,....n}, where d, is data block i and n >m. The data can be cut into blocks with
preferred sizes and geometry. Each data block is associated with the description of the shape of
the block. the number of nodes and elements in the block, the number of interfaces of the block
(see Fig. 1), the block numbers of its neighboring blocks, and the data to be exchanged with its
neighboring blocks. (Usually, this grid divider is executed only once in the beginning. One can
later combine two small blocks into one. This is much simpler than further dividing blocks into
smaller pieces.)

(4) The parallel CFD algorithm is characterized by two components: computations for each block
and communications between neighboring block interfaces. Block computation component
includes the computation instructions for all the grid points in a single block while the block
interface communication component consists of the instructions for interface data communication
and processing. The computation time used for a CFD problem depends on the complexity of the
computational component of the CFD code and the number of grid points in the data. The
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Fig. 1. Definition of blocks and interfaces in the solution domain.

communication time for an interface depends on the complexity of the communication com-
ponent and the amount of information to be exchanged between the neighboring blocks.

(5) Since the effective computational speed of a computer to a user in a multi-user environment
changes dynamically. processing time for the same data on different computers and communica-
tion time between different pairs of computers vary with time.

(6) In optimal computer load balancing, the cost is represented in terms of the total time elapsed
during the program execution.

We define the following parameters to describe the cost of computing:

(1) The computation cost for processing of data block a on computer j be ¢’ (subscript denotes the
data block number, superscript denotes the computer number).

(2) The communication cost for sending all required information of adjacent data blocks from
computer j to computer kK be u’.

(3) The computation of a data block cannot be completed until the interface data from adjacent
blocks are obtained. The cost of using computer j to process all data blocks on computer j is
C'=Y (" +u'* +W,) for all data blocks d, on computer j. where u’; is the cost of collecting
required data from all computer & to computer j in order to process d,. 1 < k<m.and W, is the
elapsed time during which block a is waiting for interface data from adjacent blocks to become
available.

Hence, the optimal load distribution task for parallel computing is to minimize the maximum of the

execution costs for all computers. This is equivalent to the following statement

minimize C = max(C’) foralll<j<sm.

When a network of computers are in the dedicated mode (single user mode), the cost functions reflect
the hardware specifications of the computer and is static. When computers operate in a multi-user
mode, the cost functions to a specific problem change dynamically depending on the extraneous load on
the computers.

We have previously reported the development of a static computer load balancing method [10] based
on the greedy algorithm [11] for solving parallel CFD problems on a dedicated network of workstations.
Before describing the extension of this static load balancing method to the dynamic load balancing in a
multi-user environment, we first summarize the method. In static load balancing, we first find the
computation and communication cost functions (measured CPU time used for computations with
respect to the number of nodes in a block processed per time step) based on several trial executions of
the code. These time measurements can be easily implemented once a CFD code is expressed as a
combination of block and interface solvers (shown by time stamps in Fig. 2). Computations for the grid
points occupying a block is performed inside the block solver. All communications between the
neighboring blocks are in the interface solver. The static load balancing method is used to direct the
simulated movement of data blocks among the computers until the cost cannot be reduced further. The
block diagram of the static load balancing procedure is depicted in Fig. 3. This procedure generates a
near minimum cost load distrubtion on all computers. The computational cost of the static load
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Fig. 2. Flow chart of FLOW3P with time stamps.

balancing method for both the best case and worst case situation is proportional to mn*, where n is the
number of blocks and m is the number of computers. After the method generates a balanced block
distribution, the block and interface data are distributed accordingly and the CFD code is executed.

3. Dynamic computer load balancing

In a multi-user environment, computer load can change dynamically since other users can start new
processes anytime. Consequently, the effective computational speed of a computer to a user changes
dynamically. In this case. it becomes unsatisfactory to rely on a static load balancing algorithm. Fig. 4
shows the variation of the CFD code execution time on a initially statically load balanced network of
workstations due to the load change on only one of the workstations. An unbalanced load distribution
on computers causes the processing time of certain blocks to be much longer than that of the other
blocks on other computers. Since the solution time for the entire problem depends on the slowest
process. the computation time can increase drastically whenever the loads are not balanced. It is
obvious that we need to periodically examine the progress of the code execution and re-distribute the
data blocks if necessary. In order to do so, we have implemented a dynamic load balancing loop which
contains the following four steps:

(1) Obtain reliable computational cost information periodically during the code execution.

(2) Obtain reliable communication cost information periodically during the code execution.

(3) Determine the cost functions based on the collected cost information.

(4) Re-distribute data blocks to computers to achieve load balancing.

In the following. the implementation of these steps are described.
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Fig. 3. Block diagram of the dynamic load balancing algorithm.

3.1. Determination of the dynamic computation cost function

In a dynamic environment, the computational cost of solving a given number of blocks on computer
j, C’, is a function of four parameters: (i) the computational complexity of the algorithm, (ii) the speed
of the computer, (iii) the total number of grid points processed by the computer, and (iv) the total
number of active processes on that computer. Since the time complexity analysis of a CFD program
only provides a loose relationship between the number of grids points and the computation time, it does
not provide an accurate timing information. Besides, it becomes difficult to gather the speed
information for a variety of computers used for executing different size blocks. To avoid calculating the
computational cost based on the complexity of the algorithm and on unreliable computer speed
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Fig. 4. Variation of total elapsed time for a statically load balanced case for FLOW3P.
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information. we calculate the computational cost functions for all computers periodically. based on the
timing data measured during the execution of the CFD code on the existing system.

In the static load balancing method. we obtained the computation cost function by directly
interpolating the measured CPU time per time step for each data block (Fig. 5). However. this
approach is not appropriate for multi-user environments, when there are extraneous processes on the
computer. In this case. one has to consider the total number of processes. as well as the CPU time of
the process for a given block. We have tried several ways to find a reliable computational cost function
for dvnamic load balancing for the multi-user environment. Here. we include the failed attempts to our
discussion since we believe they also provide useful insight to dynamic load balancing.

The first approach, for obtaining the dynamic computation cost function. was to interpolate the
measured elapsed computation time per time step for all data blocks. This approach intuitively
appeared to be reasonable. However, we were not able to calculate the computational cost on each
computer by simply adding the elapsed time for computing each block. This was due to the execution of
dependent parallel processes on the computer network. Fig. 6a shows the performance of six blocks on
the slowest processor. In this case, when the block solvers start at the same time since all necessary
interface information is already received from the neighboring blocks. Elapsed block solver time is the
same when all six processors are running simultaneously. In Fig. 6b, the same information is presented
for a fast processor. The elapsed block solver time depends when each block receives the required
interface data to start block computations. We abandoned this approach. since we were not able to
perform load balancing with a cost function based on elapsed computation time.

The second approach for determining computation cost function was based on finding a relationship
in terms of CPU time. We also had to consider the number of concurrent processes on the system. All
CPU bound user processes should be waiting for CPU time on the same CPU queue with equal priority
on the UNIX system. The share of CPU time for all of the parallel processes of an application is then
proportional to the percentage of number of processes for the application in comparison with all of the
processes running on that computer. Therefore. the elapsed time used by a single block on a computer
can be calculated by multiplying the sum of the measured CPU time for all the blocks by the percentage
calculated above. When there are no extraneous processes. elapsed time of a single block is equal to the
sum of CPU time measured for all the blocks on the same processor. Several UNIX commands were
used to determine the number of total processes on a computer but results were not as expected (e.g.
the total number of processes running on the computer was usually less than the known number of
blocks on that computer). Based on many trials. we observed that. similar to the first case. when all
processes on computers are mutually independent, this approach works well. When the processes are
mutually dependent. this approach did not work due to the difficulty in measuring the number of total
processes on each computer.
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The third approach was based on the lessons learned from the above experiments. Since parallel
computation of many blocks are inherently mutually dependent and since they cause problems in
counting the number of processes, we exclude them in counting the number of processes on one
computer. We only count the number of independent processes for each computer. A background
process, Process_Tracker, which uses UNIX ps command, is initiated on each computer after each load
re-distribution. Process_Trackers periodically (about 10 seconds in our experiment) count extraneous
independent processes (total processes subtract by the number of parallel application processes) on
each computer and provide the average number of extraneous processes for all the time steps from the
most recent load distribution to the last time step. The total computation cost used by all blocks on a

computer j, C’, can be estimated by

Cj = (z (t{.CPU)) (N]cxtr + Nixpp)/fvl;;pp,

where t/ p is the measured CPU time for block i on computer j per time step. N’ is the total
number of blocks of a given parallel application on computer j. N’ . is the average number of
extraneous processes on computer j. If there are no extraneous processes, the computation cost of a
block becomes equal to the sum of CPU times of all the blocks on that computer. Since some block



.ACE.

parallel
lems in
on one
- .ground
ch load
;aneocus
T .ses) on
rom the
ks on a

—~—

1e total
nber of
~ ost of a
e block

Y.P. Chien et al. | Comput. Methods Appl. Mech. Engrg. 119 (1994) 17-33 S

processes finish earlier than others on the same computer due to differences in block sizes. N/, is
calculated as the total number of grid points of all the blocks on computer ; divided by the number of
grid points of the largest block on computer j. Therefore, the dynamic computation cost function of a
computer is the interpolation of the estimated elapsed computation time for all blocks on the computer.

We tested the computation cost function obtained by the third approach and used it as a basis for
dynamic load balancing. The calculated computation time as calculated above was found to be an
accurate estimate of the real life situation as it will be discussed in Section 4.

3.2. Finding dynamic communication cost function

The dynamic communication cost of each data block depends on the size of the interface information.
Since the geometry of every data block is fixed, the total number of interface grid points of each data
block is known. Due to the fact that the interface message size is a function of the number of interface
grid points. the number of bytes of information to be sent by each interface grid point can be easily
determined.

The communication cost is also a function of the speed of the communication network, and the
amount of traffic on the computer network. We have tried to use the most recent communication cost
measurement to predict the communication cost in the immediate future. One encountered problem
was due to the fact that the system clocks of different computers may be quite different, which makes
the timing recording for communication cost inaccurate. Since the user cannot adjust the system clock
of all computers on the network. we adopted the following procedure to ensure the accuracy of the
timing measurements.

(1) Find the difference between the clocks of all computers by sending a round trip message from
computer a to computer b and back to a. The message is time stamped each time before it is
sent. Let the transmission time for the round trip message be ¢ the clock difference between
computer a and computer b can be calculated as

round *

clock,, = stamp, — (stamp, +1,,,.4/2) .

(2) During each step, each.process sends a message with a departure time Stamp f,.,, . ure-

(3) The process which receives the message makes an arrival time stamp ¢,_,,.,.

(4) The communication cost between the two data blocks is the actual data transmission time ¢,
which can be calculated by using the following equation

Ly =1

a

- clock,,

arrival tdepanurc

We experimented with the measurement of communication time on an Ethernet by sending the same
message between two computers many times and observed that the measured communication time
between two computers may vary over a large range (see Fig. 7). However, for a message under 2K
bytes, the average of the measured clapsed communication time per time step on an Ethernet which
was not highly loaded was found to be close to a constant. The results of this experiment is as expected
since (i) the messages sent between computers through Ethernet are grouped in packets, and (ii)
Ethernet assigns the priorities to messages randomly after a collision occurs.

At this time we should note that during our experiments on tightly distributed computational
environmental (such as workstations using a common file server: IBM SP1 at Kingston and Cluster of
RS/6000 workstations at NASA Lewis Research Center), the communication cost between blocks
represented only a small percentage of the cost in terms of the total processing time (less than 2% of
the total computation time). One explanation of this small communication cost is that the application is
two dimensional so that the amount of interface data between blocks is small. The other explanation is
that all nodes use a common file server and are in a local network. Therefore. we can almost ignore the
communication costs in such an environment. However, in a more general loosely distributed
computational environment (network of independent workstations) with a long communication distance
(e.g. literally hundreds of miles away) and for three-dimensional parallel applications, one obviously
cannot ignore communication costs.
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load).

3.3. Parallel CFD software environment

In our dynamic computer load balancing experiments. We used a three layer hierarchy built on top of
the UNIX environment (see Fig. 8). The lowest layer is the application portable parallel library (APPL)
developed at NASA Lewis [12]. APPL provides tools for portability on different distributed computers.
The middle layer is a database management library (GPAR) specifically developed for the parallel
computation of problems defined by computational grids [13]. GPAR is built on the top of APPL to
support managing multi-block grid applications on parallel / distributed computers. GPAR supports
structured or unstructured grids within blocks and support different types of block interfaces (matching.
non-matching. overlapping. etc.). The highest layer is the CED application programs. A CFD program
FLOW?3P has been used as 2 test bed for our load balancing experiments [5]. The flow chart of this
program is shown in Fig. 2. The overall flowchart of the multi-block solver environment with different
application progframs is shown in Fig. 9. As can be seen from this figure. other portable parallel parallel
communication libraries can also be utilized as well as other applications by using GPAR. Grid blocking
capabilities and post processing of blocks are additional features of this environment.

The information flow relative to the dynamic computer load balancer is depicted in Fig. 10. The
dynamic load balancer acts as a process controller for a given parallel job. Based on heuristic rules of
the cost functions obtained in the past execution of the CFD program. the load balancer first distnbutes

-
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-

Fig. 8. Hierarchical environment for parallel CFD computations.
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block processes to computers through APPL. Then, after every n time steps, the load balancer collects
(i) the average computation cost and communication cost of every process in the period from last load
distribution to present time, (ii) the extraneous process information of every computer from Process-
Trackers, (iii) old data block distribution from APPL, and (iv) data block information and interface
data from GPAR. Based on the above information, the load balancer re-distributes the data blocks

among the computers.

4. Examples

The following examples demonstrate the applicability of the dynamic load balancing method for
solving parallel CFD problems in the distributed computing environment. The first example dem-
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FLOW3P | pumoerol GPAR
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New Process Distribution
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Fig. 10. Information flow for the dvnamic load balancer.
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onstrates the application of the dynamic load balancer in a controlled environment. In this case. we
have the total control of the load distribution on all the computers. The computers used in the
experiment were five nodes on an [BM SP1 at IBM Research Center at Kingston. New York. The
parallel CFD application program FLOWS3P was used in this example. We assumed little knowledge
about the details of FLOW3P. Only several time-measuring instructions were added to FLOW3P
around the block solver and the interface solver as shown in Fig. 2. The input CFD data was a C-gnd
with 65000 nodes (see Fig. 11). This grid was divided into 30 blocks by a grid-dividing program
developed for management of parallel grids. The topology of the blocks is depicted in Fig. 12. Numbers
on the C-grid indicate block numbers. The sizes of data blocks are listed in Table 1. Thousands of time
steps are usually required to obtain the final solution. After each time step. interface data are sent
between adjacent blocks via Ethernet.

Based on the assumption that the computers are of the same speed. these thirty data blocks are
initially distributed six per computer to five nodes on SP1 for parallel processing. In this experiment.
the cost function used for load balancing did not include the communication cost. We forced the
dynamic load balancer to rebalance load on the computer for every n time steps, where n = 13. Fig. 13
depicts timing for the application code execution in Sn time steps. The solid line represents the average
elapsed time used for execution per time step. The dashed line represents the estimated time of
execution per time step under balanced load distribution. The suggested load distribution at the end of
every set of n time steps are listed in Table 2. The integers under each computer number in every n
time steps are data block numbers. The extraneous load on each computer measured during each n time
step (in terms of number of processes are shown by the floating point numbers) is listed below the
suggested load distribution. During the first n time steps. only the processes of the application are
loaded on these five computers and no extraneous processes are introduced. Since there was no
extraneous load introduced during the n time steps. no load re-distribution was necessary at the end of
n time steps. During the second set of n time steps, three independent extraneous processes which
contains infinite loops were introduced to computer 1. Since computer 1 was slowed down. the
computation time of the application per time step jumped up during the second set of n time steps.
During this second set of n time steps, the dynamic load balancer detected the change in the
computation cost function. In the beginning of the third set of n time steps. the dynamic load balancer
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Fig. 12. Topological relationship for C-grid shown in Fig. 10.
Table
Number of nodes in each data block
Block number Block size Block number Block size Block number Block size
1 2304 11 2304 21 2176
2 2304 12 2176 22 2240
3 2176 13 2240 23 2304
4 2304 14 2304 24 2176
5 2304 15 2176 25 2240
6 2176 16 2176 26 2304
7 2240 17 2232 27 2176
8 2304 18 2108 28 2240
9 2176 19 2240 29 2304
10 2240 20 2304 30 2176
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Fig. 13, Timing result using FLOW3P on SP1 in a controlled environment with varving load on 5 computers.
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Table 2
The load distribution of 5 nodes of SP1 for every n time steps
{teration Computer Computer Computer Computer Computer Experimental Simulation
1 2 3 4 3 time time
ln 1,2.3.4. 7.8.9. 13. 14,15, 19.20. 21, 25.26.27. 12.2 10.5
5.6 10.11. 12 16.17. 18 22.23.24 28.29.30
0.0 0.0 0.0 0.0 0.0
2n 2.4.5 1.7.8.10. 6. 13,14, 15, 3.19,20, 21, 9,25.26.27. 17.7 12.0
11. 12 16.17.18 22.23.24 28.29.30
3.0 0.0 0.0 0.0 0.0
3n 2,43 1.7.38.10. 6,13, 14,135, 3.19.20.21. 9.25.26.27. 13.3 12.0
11.12 16.17.18 22.23. 24 28.29.30
3.0 0.0 0.0 0.0 0.0
in 2.4.5.18 1.7.8.10. 6.16.17 3,15.19. 20, 9.25.26.27. 218 14.6
11.12.13. 21,22.23. 28.29.30
14 24
30 0.0 5.0 0.0 0.0
5n 2.4,5.18 1.7.8.10. 6.16.17 3.15,19.20. 9.25.26.27. 16.3 14.0
11.12.13 21.22.23, 28.29.30
14 24
3.0 0.0 5.0 0.0 0.0

removed three blocks from computer 1 and distributed these three blocks to the other computers. Since
there were no new processes introduced in the third n time steps, We¢ can see that the load
re-distribution reduced the computation time by 22¢% compared to the second set of n time steps.
During the fourth set of n time steps, we introduced another five extraneous load processes to computer
3 so that the processing time for the application jumped up again. After load re-distribution at the end
of 4n time steps. the computation time was reduced 249 in the fifth set of n time steps.

The second example demonstrates the same experiment, except (i) six IBM RS /6000 Model 560
computers at NASA's Lewis Research Center in Cleveland. Ohio were used. and (ii) the computational
environmental was an uncontrolled multi-user environment. This cluster of RS/6000 computers was
also connected by an Ethernet and a common file server. In this experiment, the communication costs,
although it is small, were included in the cost function used for load balancing. The load distribution
was rebalanced among the computers in every n (n=13) time steps. Fig. 14 depicts timing for the
application code’s execution under such conditions during S5n time steps. Table 3 describes the
suggested re-distribution of 30 data blocks to the computers at the end of each n time steps. During the
first n time steps. the application program’s processes were evenly distributed on these six computers
since we did not have information to do load balancing. Since there were changes of extrancous loads
during every n time Steps. the computation load was re-distributed at the end of every set of n time
steps as depicted by the dashed line. Similar to the first example, three extraneous processes after n and
five extraneous processes after 3n time steps were introduced to compare the effects of the uncontrolled

environment.

3. Discussions

We have described the encouraging progress on dynamic load balancing for parallel CFD problems.
Many new questions surfaced which warrants further investigations.
(1) The dynamic load balancer described in this paper is designed for reducing the computer
processing time for CFD problems on workstation clusters where the only other computatior.
processes are single processes. It would be interesting to test if two or more parallel application:
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Fig. 14. Timing resuit using FLOW?3P on LACE (RS, 6000 workstations) in a multi-user environment with varving load on 6

computers.

are concurrently executed using the developed load balancer on the same computer network. A
racing for computing power may occur between two load balancers, which may diminish the
effect of load balancing. Some rules and regulations may be needed to coordinate load balancing
for multiple parallel programs.

(2) The above dynamic load balancer assumes that the parallel computer network does not have a
system load balancing ability. Ideally, the developed scheme should complement "a parallel
operating system'. By making use of the intimate knowledge of the blocked data utilized by the
specific CFD application. the developed scheme can provide guidance to such a global load
balancing scheme. On the other hand. rules and regulations have to be placed to avoid conflict.

(3) The efficiency of parallelization decreases when the ratio of number of blocks to the number of
computers approaches to one in a multi-user environment. This is due to the fact that, in this

Table 3
The load distribution on 6 nodes of LACE for every n time steps
[teration Computer Computer Computer Computer Computer Computer Experimental Simulation
1 2 3 4 5 6 time time
In L2304 6.7.8.9 11,12, 13. 16,17, 18, 21.22,23, 26,27, 28, 14.1 12.5
3 10 14,13 19. 20 2425 29,30
0.4 0.4 0.3 0.1 0.2 0.1
2n 1.2.4.5, 6.7.8.9. 11.13 14.16. 17, 3.21,22, 12,26.27, 18.9 13.7
15 10 18.19.20 23.24.25 28.29.30
0.0 0.5 3.6 0.1 0.2 0.0
3n 1.2.4.5 6.7.8.9, 11.13 14.16. 17. 3.21.22, 12,26, 28, 17.5 14.6
15,27 10. 24 18.19.20 23.25 29.30
0.2 0.1 3.6 0.1 0.7 0.3
in 12,4, 7.8.9.10. 51113 14,1617 3.21.22. 6,12 24.4 16.3
15.27.28 24,26 18. 19, 20, 23.25.29
30
0.2 0.1 35 0.1 0.1 5.7
3n 1.2.4, 7.8.9.10, 5.11.13 14.16. 17, 3.18.21. 6.12 21.5 17.2
15.27.28 24,26 19.20.30 22.23.25,
29
0.3 0.4 3.7 0.7 0.1 5.5
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case. the share of parallel processes in one computer changes significantly due to the addition or
deletion of extraneous processes. Adding another process on a computer will slow down the
parallel process on that computer and hence slow down the parallel computations on all
computers. However. the load balancer does not have much choice t0 re-distribute the parallel
application load.

(4) We cannot allocate too many block processes on one computer. The number of processes on each
computer is limited by the operating system. To avoid this problem, we combine several data
blocks into a single one.

(5) At this time the re-distribution of the load is done intermittently. It is assumed that the processes
come to a stop before restarting the algorithm. One can improve the efficiency of such a scheme.

6. Conclusions

A methodology for dynamic load balancing of parallel CFD applications was developed. This method
enables the use of networked, multi-user workstations for solving large CFD problems. It is not
designed for any particular code but as a general tool to automate load balancing any given computer
network. The developed procedure provides a near optimal solution in terms of computation time.
Experiments demonstrate the practicality of the proposed dynamic load balancing method. In this
study, it is demonstrated that (i) dynamic computer load balancing can significantly increase the speed
of distributed computations in a muiti-user environment. (ii) computational speed of computers is the
main factor to determine the solution time, (iii) the communication cost for parallel applications in a
tightly distributed computation environment can be reduced to a relatively small portion of total
solution cost by properly managing the data. (iv) the effective computation speed of a computer in a
multi-user mode to a parallel user can be measured if the number of processes on that computer and (v)
the measurement of communication speed on Ethernet network becomes unreliable as the network
becomes crowded. The developed procedure can be extended to accomodate adaptive algorithms in
terms of grids or solution schemes as well as complex computer networks.
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Communication Cost Function for Parallel CFD
Using Variable Time Stepping Algorithms
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ABSTRACT

Network of workstations are widely used for parallel computational fluid dynamics (CFD). A
unique problem in parallel CFD is load balancing. We have been studying dynamic load
balancing for parallel CFD on a heterogeneous and multi-user environment for several years.
Our approach is to cut the problem domain into n blocks and distribute the blocks among m
processors, where m < n. Computer load is balanced by distributing blocks among computers
such that the maximum elapsed execution time of all blocks is minimized. Our load balancing
uses optimization algorithms based on the computation and communication cost functions. The
cost functions developed previously were under the assumption that all blocks are computed
using the same time-steps {1]. Recent CFD algorithm development demonstrates that variable
time-stepping approach can significantly reduce the computation and communication
requirements. Variable time-stepping algorithms allow different time-step sizes to be selected
independently in different subdomains (blocks) [2]. Therefore, uniform time step assumption
used in our previous cost function is not valid for variable time stepping algorithms. In this
paper, we describe a new communication cost function for parallel CFD using variable time
stepping algorithms. The experiments demonstrate that the proposed communication cost
function is reasonably accurate.

1. INTRODUCTION

Recent parallel CFD algorithm development demonstrates that variable time-stepping
approach can significantly reduce the computation and communication time requirement [2, 3].
The variable time-stepping algorithm means that different sizes of time-steps can be selected
independently in different subdomains (blocks) for each time-step. In a parallel solution
environment (where a block-based parallelization is applied) the time-steps of blocks may be
different from each other and change dynamically. In order to compare the communication time
in different block interfaces, a reference time step, basic time-step, is defined as the minimum
time-step that can be chosen by all blocks. We assumed that the time-steps chosen by all blocks
are integer multiples of the basic time-step.



Three different situations are considered in block-based variable time-stepping algorithms:

All blocks choose the same fixed time-step (fix time-stepping algorithm): all blocks solves,
sends and receives messages every basic time-step.

Blocks choose their own time-steps independent of each other: Blocks will solve and
exchange information when they reach to their own time-steps chosen independently. In this
case, blocks and interfaces choose the same time-step.

Interfaces choose their own time-steps independent of the blocks: In this case, interfaces will
send information to the neighboring interfaces when they reach to their interface time-steps.

While the flexibility of choosing different time-steps throughout blocks and interfaces
eliminates many unnecessary computation and communication, it complicated the tasks of load
balancing. However, the complication does not affect the load balancing algorithm but rather
require a new cost functions derivation. Since the number of time steps executed in blocks and
interfaces are different, the communication per time step does not reflect the true load on the
computers. In this paper we will discuss how to find the communication cost for variable time
stepping algorithms.

We have derived equations in [1] to provide the communication cost of sending one CFD
interface message between two CFD processes whether they are on the same machine or different
machines. To find the communication cost for a parallel CFD on different computers, we
represent this communication cost by elap_comm(i][j], where j is the block that sends the
message and i is the block that receives the message. We will use elap_comm(i][/] as the starting
point to estimate the communication cost in CFD programs in this paper.

2. COMMUNICATION COST FUNCTION FOR VARIABLE TIME STEPPING
INTERFACE

The notations used for deriving the communication cost function of variable time stepping
interface throughout this paper are listed as follows:

e N number of total basic time-steps in the program execution.

o elap_comp(i][m]: average elapsed computation time of block i on computer m per time-
step.

e num_ts{i]: number of time-steps executed by block / during the entire execution.

e bspts_compli]: the average number of basic time-steps per time-step for block i.

o elap_comml[i][j]: average communication time from the interface of block j to the
interface of block i per time-step.

o tot_elap_comml[i][j]: total elapsed communication time from the interface of block j to
the interface of block i for the entire execution.

o tot_waiting time[i][j]: total waiting time from the interface of block j to the interface of
block i or the entire execution.

e tot_comm_wait[i][j]: total elapsed communication and waiting time from the interface of
block j to the interface of block i for the entire execution.

o comm_wait_bts[i][j]: average elapsed communication and waiting time between the
interfaces of blocks i and j per basic time-step.

e bispts_comm[i]: the average number of basic time-steps per time-step for the interface of
block i.



The communication cost function for a variable time-stepping CFD algorithm is derived as
follows. It is assumed that there are p computers or processes and there are £ CFD blocks on
computer m. Block i has n neighbors which are numbered from 1 to n. In order to estimate the
communication cost for a variable time-stepping CFD algorithm, we need to know num_ts{i],

where num_ts{i] is:

num_ts{i]= N / btspts_ comp[i] (1)

Step 1: Find the elap_comm{[i][/] for each neighbor block pairs.

Elap_comm[i][j] is the communication cost for one interface connection between the
interfaces of blocks i and j per time-step. This has been presented in Parallel CFD’96

conference.

Step 2: Find the total communication time for every neighbor block pairs during the CFD
execution.

tot_elap_comm{i][j]= elap_comm(i][j1* (N / btspts_ comm[i]) (2)

Step 3: Find the total elapsed communication and waiting time for every neighbor block pairs.

This is the most important step in estimating the total communication time. This value will be
calculated for each block with its neighbors. The total elapsed communication time and waiting
time between two blocks is composed of two terms (equation 3).

tot_comm_wait[i}[j]1= tot_elap_comm[i][j]+ tot_waiting _ timei]( /] 3)

The second term in equation 3 is the waiting_time, which is introduced by the variable time-
stepping algorithm. For two neighbor blocks i and j, if num_tsi] is bigger than num_ts{ /]
then block i will experience more computation. During the entire CFD execution, block : will
compute (num_ts{i}-num_ts(j]) more basic time-steps then block ; (block i and block ; are called
slow and fast blocks, respectively). Therefore, block j will reach to its interface time-step earlier
then block i and will wait for block i to reach to a basic time-step equal to or bigger than block ;
current basic time-step. The equation for total_waiting_time for fast block j (due to block i) on
computer m is:

tot_waiting _ time{ j[i]= elap_ comp[i][m]* (num_ts{i]— num_ ts(j]) 4

However, slow block i will not experience any waiting time, since when block i reaches its
interface time-step block j interface would have already sent its message to block i interface.
Therefore, for slow block i the total elapsed communication and waiting time is:

tot_comm_wait(i][j]= tot_elap_comm[i][]] (5)

and for fast block j the total elapsed communication and waiting time is:



tot_comm_wait[j][i]= tot_elap_comm j][i]+ tot _waiting_ time] j[i] (6)

Step 4: Find the average elapsed communication time for interfaces from blocks / and j per basic
time-step.

comm_ wait_bts{i][j] = tot_elap_comm{i][j]/ N 7N

Simplification of the cost function for fixed time-step CFD algorithms
If the CFD code uses the fixed time-stepping algorithm then since for all blocks
num_ts{i] = num_ts{j]= N and btspts_comm{i]=1 for all interfaces. Therefore, equations 5

and 6 would be simplified as:

tot _comm_wait[i][j]1= elap_comm{i][j]* N (8)
Substituting equation 8 into 7, equation 7 can be simplified as:

comm_wait_bts(i][j] = elap_ comm{i]{j] 9)
3. ACCURACY OF THE COMMUNICATION COST FUNCTION

A variable time-stepping CFD code, PARC3D, was run on five processors of an IBM SP
computer in the test case. APPL message passing library [4] is used for parallel programming
execution. In PARC3D code, the computation is handled by block solver and communication is
managed by the interface solver. The block solver and interface solver in each process choose
their own time-steps during the program execution. The CFD data is divided into 16 similar
sized blocks.

Four load balancing cycles are executed in this test. In each of the load balancing cycle, the
elapsed execution time was measured. Initially the number of processes are evenly distributed
among computers. A cost function is derived based on the time measurement. The elapsed
execution time estimated using this cost function is compared with the measured time (see Figure
1). This derived cost function is used by the load balancing algorithm [5] to provide a balanced
load distribution. The elapsed execution time predicted by the cost function for the new load
distribution was compared with the actual measured execution time for the new load distribution
(see Figure 2). This test case shows that the derived cost function closely describe the time used
for parallel CFD execution. Based on the cost function, the load balancing algorithm does
suggest a better load distribution.

4. CONCLUSION

Communication cost function for variable interface time stepping CFD algorithm is
developed. The new communication cost function has been tested on IBM SP computer. The
test case showed that the cost function can predict the execution time of variable time step
parallel CFD code.
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In order to increase the efficiency of parallel CFD algorithms, a special domain
decomposition approach is adopted which divides the problem domain 1into a number of blocks
that are more than the number of computers. Each block is associated with a set of interfaces.
Each block and interface is assigned with a block solver and an interface solver, respectively.
A software library was previously developed to support this approach [1]. To improve the
efficiency of parallel CFD using this approach, a load balancing algorithm [2, 3] was also
developed. The load balancing algorithm requires the availability of a computation cost
function and a communication cost function to describe the speed of the computers and
networks for parallel CFD. In this paper, derivation of a new communication cost function for
parallel computing in a heterogeneous network environment using Ethernet with TCP/IP
protocol is presented. A practical real time procedure for obtaining the communication cost
function during the execution of parallel CFD is described. This procedure supports dynamic
computer load balancing of parallel codes. The experimental results show that the predicted

elapsed times derived from our computation and communication cost functions are very close
to the measured elapsed tmes.

1. INTRODUCTION

Solving computational fluid dynamics problems requires computers of very fast
computation speed and large memory space. As the computation speed and memory size of
computers increase, larger CFD problems need to be solved as well. Parallel and distributed
computing arc considered as practical ways of satisfying the computation requirement of
parallel CFD algorithms. It is well known in the parallel computing community that the speed
gain of parallel computations diminishes as the scale of parallelization increases. It is also well
known that the causes of the diminished return of further parallelization are due to the load
imbalance among paraliel processors and the communication overhead between parallel and
distributed processes.

Computer load balancing for parallel CFD is especially important when many
processors are involved. Most domain decomposition based parallel approaches divide the
problem domain into 2 number of subdomains that are the same as the number of computers
used in parallel execution. Load balancing is achieved by changing the number of grid points
in the subdomains. One assumption used in these approaches is that the relative computation
speeds of the parallel and distributed computers and the effective communication speeds of the
network are known. However, this assumption is valid when the parallel systems arc
homogeneous and are used in a single user mode. Since using homogeneous parallel
computers in a single user mode is expensive, it is desirable to use many readily available
heterogeneous networked workstations and supercomputers for parallel CFD. Besides, many
Supercomputers developed recently (e.g., IBM SP, Cray T3D, Silicon Graphics Galaxy, etc.)
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can be considered as a set of connected high-end multi-user workstations with a special
interconnection network. If a load balancing algorithm can be developed for networked
heterogeneous workstations, it can be used in homogeneous environments too.

We have been studying dynamic load balancing for parallel CFD on a heterogeneous
and multd-user environment for three years. Qur approach is to cut the problem domain into n
blocks and distribute the blocks among m processors, where m < n. Computer load is
balanced by a proper distribution of blocks among the computers [2, 3]. In our study, we
faced three issues. The first is to find a fast optimization algorithm for dynamic load balancing.
The second is to determine the effective computation speed of all computers in a multi-user
environment. The third is to find the effective communication speed of computer networks
used for the parallel CFD. The solutions of the first two issues for a network of single CPU
computers have been previously treated with success [1, 2] and a software package DLB was
developed to generate these solutions. Being tested with several parallel CFD programs for
many CPU bound cases, DLB demonstrated significant efficiency improvements especially in
the cases that human intuition for load balancing was limited. However, we have not been able
to use DLB for communication bound parallel CFD problems due to the lack of a good
communication cost function until recently. In this paper, we illustrate practical means of
determining a reliable communication cost function for a Ethernet network.

The paper is organized as follows. Section 1 is the general introduction of the effect of
communication to the parallel CFD. Section 2 discusses how to determine the communication
cost function for a Ethernet network and describes how to incorporate this cost function into
the dynamic load balancing. Section 3 presents some experimental results. The last section
concludes the paper.

2. DETERMINING A COMMUNICATION COST FUNCTION

By analyzing the time used for all processes in a parallel CFD, we found that the total
elapsed time can be divided into three categories: the computation time, the communication
time, and the waiting time. Load balancing can be used to minimize the communication time
between computers and to minimize the waiting time of all processors. In other words, load
balancing is to keep all computers busy and to reduce the cost of data exchange between
computers. In order to balance the computer load, a cost function is needed. Our approach for
predicting the future computation and communication cost functions is to derive them based on
the immediate past computation and communication costs. We have developed algorithms to
measure the total elapsed time and the computation time and derived the computation cost
function [1]. Here, we describe how to find the communication time and derive a
communication cost function. Since Ethernet network is a most widely used computer
network, we concentrated our study on finding the communication cost function for Ethernet
networks.

The measurement for the communication time on an Ethernet network during parallel
CFD is a difficult problem due to the random nature of message passing and collision handling
protocol. Since parallel CFD codes generate large amount of data for communication which
affect the network load, the communication speed information during the execution is needed
for load balancing. Although some specialized programs exist for monitoring the network
load, it is difficult to use them only during the execution of parallel calculations. Therefore, an
approach is developed to measure the communication time during parallel computations and to
derive the communication cost function based on this measurement.

2.1 Measuring the Communication Time Between Processors

The criteria needed for measuring the communication speed of the computer network
used for parallel calculations are rather unique. The measurement should reflect the
communication speed during the parallel CFD execution and should have minimal perturbation
to the load of the computers and network used for parallel CFD. In order to satisfy these
requirements, we developed a communication tracking parallel program, CTRACK. Since the
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parallel CFD creates a lot of communication which affects the network load, CTRACK
periodically records the communication speed by sending a message between every pair of
computers used during the CFD execution. To prevent adding additional load to the computers
and network, CTRACK sends at most on¢ message through the network at any given moment.
The idea for the measurement of communication time between two computers is straight
forward. The source computer sends a time stamped message to the target computer.
Immediately after the target computer reccives the message, it attaches a new tme stamp to the
message. Then the communication time for sending the message is the difference between the
two successive time stamps. However, many issues need to be considered in order to
understand and utilize this measurement information. By investigating many measurements of
communication speed of computer networks, the following observations were found to be

significant for analyzing the measured communication time.

Observation 1: Different computers have different clocks. Since the two time stamps for
measuring the communication time are taken on different computers, the clock difference
between two computers must be known. A surprising fact is that the clock difference between
computers can be significant. Even the clock difference of different processors on the same
IBM/SP system can be in the order of milliseconds. Table 1 shows an example of the clock
differences among three RS6000s and four processors of an IBM/SP. Since the clock

differences can contribute to large measurement €rrors, the communication time ¢, for
sending a message from computer g to computer b is modified as follows:

Cha =t —h + 4l (D

where 4 is the time stamp on the message issued by computer a,
1, is the time stamp on the message issued by computer b, and
Aty is the clock difference between computer g and computer b.

Table 1. Clock differences between three RS6000 (RS6K) and four nodes of an IBM/SP on
the same local network in seconds.

RS6K 1] RS6K 2 | RS6K 3| node 4] nodeS node 6| node 7/
RS6K 1 01-0.0037 1 -0.0021] -2.0344 3.0340| -2.0349] -2.0348
RS6K 2 01 0.0016 | -2.0332] 01| -2.0334] -2.0334
RS6K 3 01 -2.0348 | -2.0346 3.0348 | -2.0346
node 4 01 -0.0001| -0.0003] -0.0001
node 5 01 0.0001] -0.0006
node 6 0] -0.0005
node 7 0

Since the clock differences between computers are constan, they need to be measured
only once. The condition for using this procedure is that there are no loads on the computers
and the network. The following is the procedure adopted for determining the clock difference

between two computers:
Step 1. The computer a sends computer b a short message attached with a time stamp

h.
Step 2. Immediately after receiving the message, the computer b attaches a new tme
stamp f, to the message and sends the message back to the computer a.



Step 3. Immediately after receiving the returned message from the computer b, the
computer g time stamps the message with 13.

Step 4. The clock difference, Aty,, between computer b and computer a is calculated
from:

Aty =ty —12)+0.5(;3 - f) 2)

Observation 2: Communication time is stepwise linear with the size of the message.
According to the IEEE standard 802.3, the message on Ethernet is sent in packets. The
maximum number of data in each packet is 1,500 bytes [4]. By measuring the communication
time for messages of various sizes, we also observed that the communication time is stepwise
linear to the size of the message. This fact can be used for deriving of the communication cost,
C, of a large message based on the communication cost of other message:

C=KA 3)

where A =c,, =1, -1 + At for a message of one packet size and K| is the number of
packets.

Observation 3: The communication cost for sending messages between two processes on
the same processor cannot be neglected. Contrary to our earlier assumption that the
communication between processes on the same computer takes negligible time, we observed
that this communication cost can be as high as about one third of the communication time for
sending the same message between two different computers.

2.2 The Effect of the Load on the Computer to the Communication Time

After incorporating the three aforementioned facts into the communication cost function
and using it in the load balancing algorithm described in [2], the predicted communication time
was still found to be far from the actual measured communication time. Therefore, other
factors that affect the communication time were investigated.

Observation 4: The communication time for sending a message between processes on the
same computer is a function of the number of the load on the computer. Based on the
measurements of communication time for sending the same message between two processes on
the same computer under various computational loads, the communication cost function can be
approximated by the following linear function (Figure 1):

C=K,(A+K,L) @

where, C is the communication time for sending a message between two processes on a
computer, K, is the number of packets used for sending the message, A is the communication

time when there is no load on the computer in terms of seconds, K, is the load factor in terms

of seconds per process (load) on the computer, and L is the number of processes (load) on the

computer.
It should be noted that the CPU bound loads on a computer give different linear

functions than the I/O bound loads.
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Figure 1. Load factor versus the message size with different CPU

bound loads on the computer.

Observation 5: The communication time between processes on different computers is
affected by both the loads of the source computer and destination computer. To study the
effect of computer loads to the communication time, computers of different speeds were
assigned as the sender and the receiver of the message in the measurement of communication
time. Table 2 shows the communication time of sending 32-byte messages under various loads
on both the sender computer and the receiver computer. Both the sender and the receiver
computers are IBM RS6000s but the CPU speed of the sender is twice faster than that of the
receiver. The measurement result is an average of 700 trials. The unit of the numbers in the
table is milliseconds. In this particular case, the load of the receiver computer affects the
communication time the most. However, in other cases, such as more load on a slower sender
and less load on a faster receiver, the load of the sender computer controls the communication
time. This can be explained by the design of the UNIX system [3]. In a multi-user and multi-
tasking computer, the CPU is shared by all processes on the computer. The operating system
assigns a time quantum to each task in the process round robin queue. Therefore, the more
load and the slower CPU on a computer will cause slower response to the message by the
computer.

Table 2. Effect of the loads on sender and receiver computers to the communication time.

Number of CPU
bound loads on Number of CPU bound load on the sender
the receiver
0 1 2 3 4 6
0 2.8 2.5 2.5 3.1 3.0 2.6 2.6
1 3.0 3.0 3.3 4.2 4.0 3.4 2.7
2 4.8 5.2 5.2 5.5 6.3 5.6 4.5
3 6.2 6.2 6.6 6.4 7;0 7.2 71
4 7.5 7.8 7.5 6.1 7.4 7.7 8.1
8 8.3 8.0 8.5 7.2 8.6 7.8 79
6 7.8 8.6 8.6 7.9 6.6 6.4 6.3




2.3 Derived Communication Cost Function
Based on the above observations, communication cost functions for sending messages
on the same computer and to different computers are developed.

2.3.1 For sending messages between processes on the same computer
Communication time between two processes on the same computer is:

K (A+Kpulopy + KioLiy) 5)

where K, is the number of packets used by the message,
A is the communication time for sending one packet between computers,
K, is the time quantum for CPU bound processes,

L, is the average number of CPU bound processes,
K, is the time quantum for /O bound processes, and
L,, is the average number of /O bound processes.

This communication cost function can accurately predict the communication time
between computers in a testing environment in which the type of processes are known.
However, it is difficult to determine K, and L;, during practical parallel computations since
whether a process is CPU bound or /O bound is unknown. Depending on the input and load
distribution, a parallel program can be CPU bound in one case and /O bound in another case.
To solve this problem, it is assumed that any process that is not our parallel CFD process as the
CPU bound process (we also call them extraneous processes). A program PTRACK has been
developed for finding the number of extraneous processes during parallel CFD executions [2].
It is also assumed that parallel CFD for a given input is a fixed combination of CPU bound and
I/O bound processes. Therefore, the communication cost function between two processes on
the same computer can be rewritten as:

K(A+K puLepy + Kgaliga) 6

where K¢, is the ime quantum for parallel CFD processes and L4 is the average number of

parallel CFD processes.
The coefficients K, and Ly can be obtained or calculated from the CFD data input,

and L, can be measured [2]. The coefficient A, K, and K4 can be derived by measuring
the communication cost under different L, and L. Since K, and K 4, are independent of

the computer network, they need to be derived only once. The coefficient A reflects the
network load so that it is measured repeatedly during parallel CFD. It should be noted that due
to the random nature of the computer and network loads, and due to the collisions in the
Ethernet, the reliable measurement value should be the mean of many measurement samples.

2.3.2 For sending messages between processes on different computers

The approach used for deriving the communication cost function for sending messages
between processes on different computers is similar to that on the same computer. However,
the communication cost function is affected by the number and type of loads on both the
sending and receiving computers (as described in Observation 5). Therefore, the
communication cost function between two processes on different computers can be
approximated from:



K, (A+F)+ Aty )]

where, K, is the number of packets needed for the message,
A is the communication time for one packet in the network,
At,, is the clock difference between computers a and b, and
F is a function of the loads on the sending and receiving computers.

The function F can be derived accurately only when the load matrix as shown in Table 2 is
available for computers @ and b. However, generating the load matrix is a time consuming
process which is not suitable for real-time dynamic load balancing. Based on the observation
of the load matrices of many pairs of computers, F is approximated by:

F = max{(KapeLagpu + Kacalaca ) (Kbepul bepu + Kbgalbga)} @)

where
La,,, is the average number of extraneous CPU bound processes in the sending

computer a,
Ka,, is the time quantum for extraneous CPU bound processes in the sending

computer 4,
La.g is the average number of CFD processes in the sending computer a,
Kay is the time quantum for CFD processes in the sending computer 4,
Lb, is the average number of extrancous CPU bound processes in the receiving
computer b,

Kb_. is the time quantum for extraneous CPU bound processes in the receiving

cpu
computer b,
Lb.y is the average number of CFD processes in the recciving computer b,

Kb, is the ime quantum for CFD processes in the receiving computer b.
The procedure for finding this communication cost function is as follows:

Step 1. Find Af,, using the procedure for determining the clock difference between two

computers described in section 2.1.
Step 2. Let computer a to be the message sender and b to be the message receiver.
Measure the communication cost without parallel CFD load on both sender and

receiver computers.
Step 3. Measure the communication cost after adding several CPU bound loads to the

receiver computer. Since K, and all L are known, Kb, can be derived based

on the results of steps 2 to 4.
Step 4. Measure the communication cost after adding several CFD loads to the receiver

computer. Since K, and all L are known, Kby can be derived based on the

results of steps 1 to 4.
Step 5. Change the role of sender and receiver and repeat steps 2 to 4 to gencrate Ka.,

and Ka‘_.fd



3. EXPERIMENTAL RESULTS

3.1 Evaluation of the Communication Cost Function

The communication cost function is used to predict the elapsed processing time of a
parallel CFD with various data input and various number of computers. Table 3 summarizes
the results on an IBM/SP system. The column for "# of blocks” in the table defines the
number of solution blocks used in each case. The column for "ratio of comp/comm" describes
the ratio of measured elapsed computation time to the measured elapsed communication time.
The column for "% error" is calculated as:

Fperror = measured elapsed time — predicted elapsed time
measured elapsed time

Table 3. Performance of cost function with different data input.

Average Ratio of Measured | Predicted
Case | #of | #of |block grid | comp/comm | elapsed clapsed % Error
Blocks | Hosts points time time time
1 5 3 11000 1.43 0.085 0.086 1.2
2 5 3 40000 2,45 0.262 0.249
3 10 3 22000 0.77 0.233 0.263 12
4 12 S 15000 0.186 0.299 0.360 20 |
5 15 5 15000 0.088 0.410 0.290 29
6 15 3 15000 1.00 0.234 0.235 0.5
7 20 5 12000 0.064 0.449 0.336 25

The majority of the cases in the experiment have unreasonably high communication
costs. These cases were chosen for demonstrating the accuracy of the communication cost
functon in rather unfavorable conditions. The ratio of the measured elapsed computation time
to the measured elapsed communication time is determined by the sizes of blocks, the number
of computers used and the topology of the blocks. As depicted in the table, the communication
cost function gives fairly accurate prediction of elapsed execution time when the
communication cost is comparable to or little more than the computation time. When the
weight of communication is several times of that of the computation time, the cost function
becomes inaccurate. However, this situation does not usually occur in practical applications
with very large size blocks.

3.2 Dynamic Load Balancing Using the Communication Cost Function

The following experiment demonstrates the applicability of the communication cost
function. Three IBM RS6000 computers were used in the experiments. The CPU speeds of
the first two RS6000s are similar. The CPU speed of RS6000 #3 is about one half of that of
the other RS6000s. In order to make communication a dominant factor in parallel
computations, a small case with 54,400 grid points was executed on three computers. The
CFD problem is divided into 5 blocks of similar sizes. In this arrangement, the communication
time used in the program execution is comparable to the computation time even when the load
is balanced. Initially, the load is distributed to the computers as follows:

RS6000 #1 RS6000 #2 RS6000 #3
block 1 block 2 blocks 3, 4, 5




Using the communication cost function described in the previous sections and the computation
cost function described in [2], the load balancing algorithm [3] predicted that the clapsed
execution time would be 0.372 seconds per time step. The measured actual elapsed execution

time of this distribution was 0.367 seconds (Figure 2).
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B Elapsed Computational time a(ij): Communication cost between blocks "i" and "j"
[] Waiting + Communication time  predicted Elapsed time (milliseconds) = 372
Hi_Elap = Host "i" Elapsed time Actual Elapsed time (milliseconds) = 367

Figure 2. Computation, communication and the waiting time in one iteration before DLB.

Based on the information obtained in this execution, the load balance program suggested the
following distribution:

RS6000 #1 RS6000 #2 RS6000 #3
blocks 1,2, 5 blocks 3, 4

This suggested distribution shows that parallelization to more than two computcrs actually
increases the execution time. The suggestion also agrees with the fact that RS6000 #3 is a
slower computer. The load balancing program predicted that the elapsed execution time for this
distribution is 0.175 seconds per time step. The measured actual clapsed execution time for
this load distribution is 0.179 seconds per time step (Figure 3). This experiment demonstrates
that the communication cost function is fairly accurate.

The development of a communication cost function relics on the accurate measurement
of the communication time. Due to the random nature of the Ethernet and TCP/IP, one time
measurement is mostly unreliable. Therefore, all measurements are repeated several hundred
times (as time permits) concurrently with the parallel CFD execution. The result is the mean of
all these repeated measurements. Since the parallel CFD executions usually run for hours,
there is usually enough time to take the communication time measurement repeatedly without
adding noticeable load to the computers and the network.
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Figure 3. Computation, communication and the waiting time in one iteration after DLB.

4. CONCLUSIONS

The communication time for parallel CFD is a function of not only the computer
network but also the loads on the computers which send and receive the message. A
communication cost function is developed based on these observations. A software package is
also developed to automatically derive the communication cost function for Ethernet network

and TCP/IP protocol.
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Abstract

A scheme for improving the efficiency of com-
munications for the parallel computation of Euler
equations is presented. PARC code is employed as
an example for analyzing the flow through a su-
personic inlet. The flowfield is divided into sub-
regions called “blocks.” The parallel computation
of the problem normally requires communication be-
tween each block after each time-step of an explicit
Runge-Kutta integration scheme. In the developed
procedure, the boundary conditions are frozen for
k = 10 — 20 time-steps and blocks are integrated in
time without communicating with each other dur-
ing this period. When the boundary conditions are
updated, an oscillatory error is introduced into the
solution with a fundamental period of 4k time-steps,
which is then filtered in time. As a result, the com-
munication cost of parallel computing is significantly
reduced. Examples for steady and unsteady flows
are presented to demonstrate the applicability of the
developed procedure.

Introduction

During the parallelization of explicit schemes, the
efficiency of the communication plays a critical role.
Especially for a structured grid, one can develop
explicit schemes where computational coet is small
in comparison with the communication cost. In
the present paper the PARC code with an explicit
Runge-Kutta scheme is chosen as the parallel nu-
merical algorithm to be studied.! Parallelization of
this code has already been discussed in a previous
paper.? It is based on a block-based structure of the
data where the solution domain is divided into many
subdomains or “biocks”. The global solution is ob~
tained by integrating the equations for each block

1

separately. The blocks are interconnected to each
other through an overlapping region or “interface,”
by one grid point. The solution scheme marches
in time while exchanging boundary values of each
block at each time-step. Figure 1 summarizes the
arrangement for the case of two neighboring blocks.?
The numerical integration of the grid points are
conducted inside s block soiver. The block solver
updates an interface solver at intervals which then
communicates with the interface solver of the neigh-
boring block. Each interface solver also updates its
block after receiving information from its neighbor.
As can be seen from this figure, each block and its in-
terface solvers are on the same processor. The time
intervals for sending and receiving information be-
tween the blocks and interfaces can be different, and
can be chosen based on the local conditions.? The
distribution of the blocks among a given number
of processors can be optimized by distributing the
blocks according to their computation and commu-
nication requirements.?+

Processor 2

Figure 1: Blocks and Interfaces

In Reference 2, based on the local stability con-
ditions, the time intervals for communicating be-
tween the blocks and interfaces, as defined in Figure
1 were selected. The resulting system was then load
balanced and considerable efficiency improvements
were obtained, specifically by reducing the commu-
nication cost. In the present paper, a brief sum-
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mary of this procedure and the parallelization tools
are provided. A further attempt to reduce the com-
munication cost is presented here since the stability
requirements for explicit schemes can be quite strin-
gent. Specifically, the communication time interval
is further increased, exceeding the limit suggested
by the local stability conditions at the interface. By
not updating the boundary of a block at required
time intervals, the solution becomes discontinuous
between the blocks. An error is introduced at each
boundary which produces high frequency spatial cs-
cillations inside each block. Based on the study of
this error, a filtering scheme is developed, which cor-
rects the boundary conditions and eliminates the
high frequency noise. By employing this scheme,
one can reduce the communication cost by 90% yet
maintain the same accuracy. The numerical results
presented in this paper demonstrate applications for
both steady and unsteady flows.

Background Information

For the parallelization of the NPARC code, sev-
eral tools were utilized. A brief summary of these
tools and the employed Runge-Kutta algorithm are
summarized here.

GPAR - A Grid Oriented Datal
for Parallel Computing

GPAR® was developed specifically for data manage-
ment of block structured CFD algorithms. It in-
volves two data sets: blocks and interfaces. The
grids in each block or interface can be either struc-
tured or unstructured. In addition, interfaces
can be matching, unmatching, overlapping or non-
overlapping. These parameters, once defined by the
application programmer, can then be used by GPAR
to handle the low level requests between the pro-
cessors. Two primary low level message passing
libraries are utilized: APPL, developed by NASA
LeRC and PVM. The relationship between the com-
ponents is illustrated by Figure 2.

Explicit Runge-Kutta Algorithm
and Stability

The governing Euler equations for inviscid flow are
cast in the following conservation form:

5, o8, _
T ax; 0 )

2

APPLICATION
PROGRAM

GPAR

PVM
APPL

Figure 2: Relationship of GPAR with the applica-
tion program

where Q = (P:P"a WvavPE)T» and F') are the in-
viscid flux vectors. These equations are transformed
into computational coordinates and are solved in
strong conservation form by the NPARC code. Ad-
ditional source terms appear on the right hand side
of Equation 1 for axisymmetric flows. The NPARC
code can solve the Euler equations either with an
implicit Beam-Warming algorithm, or an explicit
multi-stage, Runge-Kutta scheme. In the present
paper, a three-stage variant of the Runge-Kutta
scheme is considered. The Euler equations are cast
in semi-discretized form as f{ollows:

A;-F; = RHS

where A4 is the space discretization operator op-
erating on the vector of conservation variables Q.
Central differencing is used for the discretization of
the spatial domain. The three-stage Runge-Kutta
scheme used can be written as follows:

Qo = Q"

Q(1) = Q(0)+0.6At RHS(0)

Q(2) = Q()+06AtRHS(1)  (3)
Q@) Q(2) + At RHS(2)

™ = QM)

where At is the time-step used for the temporal in-
tegration. A linearized stability analysis for the one-
dimensional Euler equations in conservation form
discretized as defined in Equation 3 yields the fol-
lowing CFL stability criterion:
_ (u+a)at
where ¢ is the Courant number in equation 4. The
amplification factor G(z) can be defined in terms

1.8
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of the characteristic polynomial obtained from the
linearized stability analysis.

Qn+l
Gl =
|Gl o
G = 1-z+067-0362° (5)
z = Icsind

where 6 is the phase angle obtained from a Fourier
decomposition in the frequency domain. The region
near # = 0 corresponds to the low frequency region,
whﬂetheregionmr0=rcorrespondatothehigh
frequencies. The highest frequency resoivable by the
mesh corresponds to a wavelength of 2Az. Figure 3
contains a plot of the amplification factor G. It can

o '5(’ o
A ,.

Figure 3: |G} for 0 < 9 < x,and ¢ =09

be seen from the figure that the amplification factor
G is appraximately equal to unity for both high and
low frequency ranges. This implies that the low and
high frequency spatial waves are not damped by the
three-stage Runge-Kutta scheme. Artificial viscosity
is normally introduced to damp the high frequency
oecillations.

Variable Time-Stepping

For improving the efficiency of the pumerical in-
tegration of the Euler equations, a variable time-
stepping procedure was implemented for each block
and interface.? For each block, by checking the CFL
condition for all the grid points inside the block, a
time-step was chosen to ensure stability as shown

3

below.
¢

= Maz, [[Us] +a|K3]]

where k is the coordinate direction. Similarly, a
time-step was chosen for an interface based on the
stability of the grid points on that interface. For
supersonic points, the interface communicated only
in one direction. For subsonic points, an interface
communicated in both directions but at different in-
tervals.

Al

(6)

— Az.

At". - uy+a

Aty = 22 (a-w)>0 (D
a— Uy

From the above stability requirementas, the time-step
for each block and interface was defined as an inte-
ger multiple of a basic time-step. For steady flows,
where time-accuracy is not required, a local time-
step is defined from the CFL condition for each node
individually.

Test Casea

Two test cases are chosen to investigate the effect
of the reduced communications. These cases were
also employed in the previous study of the NPARC
code.?

o Steady Flow: An axisymmetric mixed-
compression YDC (Variable Diameter Center-
body) inlet is considered under a supersonic
inflow of M=2.5 and a subsonic compressor
face outflow Mach number M=0.3.%* The 2D
version of the NPARC code has an option to
handle axisymmetric flow also. The reference
inlet pressure is 117.8 1b/ft?, and the reference
inlet temperature is 395 Rankine. The cowi-tip
radius of the inlet, Rc=18.61 inches is used
to non-dimensionalize the lengths. The grid
for this inlet consists of appraximately 4500
nodes, and is divided into 15 blocks, all of
appraximately equal size as shown in Figure
4. A steady state solution is sought using
local time-stepping for all nodes in each block
with a uniform Courant number of 0.9 for all
nodes. The solution is plotted in the form of
density at the midpoint of each interface for
all blocks every iteration. This test case is
chosen as an example of a small problem where
communication cost is large in comparison with
the computation cost.
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e Unsteady Flow: The same grid illustra . in
Figure 4 is used to study the response - i si-
nusoidal temperature perturbation appued at
the inlet section. The amplitude of the per-
turbation is 5% and the frequency is 100 Hz.
The density variation is plotted at one of the
subsonic interfaces downstream of the normal
shock. The steady state solution is obtained
first and then the temperature perturbation is
applied. The reference pressure and tempera-
ture are 117.8 1b/ft? and 395 Rankine respec-
tively. Variable time-stepping is used inside
each block, as described in equation 6.

Figure 4: Axisymmetric Case with 15 Blocks

Red | C icati :
Explicit Schemes

By using variable time-stepping considerable im-
provements in efficiency were obtained.? In order
to further reduce the communication cost dictated
by the stability conditions, one can further increase
the interval for updating the interfaces. An exper-
iment was conducted as follows: after grid points
on each block and interface have chosen their own
time-step, based on local stability conditions, the
boundary conditions were frozen for 10 time-stepe.
This led to both spatial and temporal oscillations.
The magnitude of these oscillations was negligible
for supersonic interfaces but significant for subsoaic
interfaces. In Figure 5, the variation of density with
respect to time is plotted at the subeonic interface
between blocks 8 and 9 in Figure 4 for the steady
flow test case. The solution is stable inside each
block, since the time-step chosen for integration sat-
isfies the local stability condition for the grid points
inside the block. However, the solution is polluted
by a high frequency noise emanating from the dis-
continuity introduced on the boundary. A frequency
decomposition of the signal in Figure 6 shows that
the high frequency oecillations are associated with
distinct frequencies. They corresponded to a time
period of:

@)

T = 4kAt

4
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Figure 5: Density variation for k = 10

038 v v -
03
028
02
0.18

Normalized Gain

0.1 H

o A LA
0 05 1 1.5 2 25 3
Nondimensionaiized Frequency @

Figure 6: Frequency response of density variation
for k =10

s 4

and its multiples, where k is the communica-
tion int~rval. The frequency in Figure 6 is non-
dimens: alized as foi. vs:

] (um)
W =Ww
x

The same behavior was observed when k was in-
creased to 20, as shown in Figures 7 and 8, although
there are many more peaks observed in the frequency
spectrum. This is due to the fact the frequencies ex-
cited by the communication errors are much lower
than the previous case and interact with the correct
solution. This point will be further discussed below.

Figure 9 shows the spatial oscillations developing
inside a block due to the error introduced by freezing
the boundary conditions for k = 20. The frequency
decomposition of the signal in Figure 9 is shown in
Fir:re 10, which indicates a significant oscillation
w1 1 wavelength of 2Az near the boundary.

In the following, the source of the above errors

introduced by reducing the communications is dis-
cussed, and a filtering technique is utilized to elimi-

(9)
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Figure 8: Frequency response of density variation
fork=20

nate the oscillations while maintaining the accurate
solution.

Error Analysis

An investigation was carried out to explore the origin
of the above oscillations. The following simple model
was defined to study the problem.

For the case of two blocks shown in Figure 11,
the flow is assumed to be one-dimensional from left
to right and subsonic. The interfaces belonging to
Block I and Block IT overlap each other only by one
grid point. Since the flow is subsonic, two waves
propagate information downstream with speeds u
and u + a while one wave propagates information
upstream with a speed of u — a. u is the fluid veloc-
ity while a is the acoustic speed for the fluid.

During the parallel computation, point 1 serves as
the downstream boundary condition for Block I, and
point 3 serves as the upstream boundary coadition
for Block II. Points 2 and 4 are computed as inte-
rior points of Blocks I and IT respectively. During
the time-integration, the solution values computed

3

st
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-
v

sat 1
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Grid Point Index
Figure 9: Instantaneous density variation inside a
block for k = 20
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Figure 10: Spatial frequency distribution of density
variation inside a block for k = 20

at point 2 overwrite the previous values at point
3, every time communication between the interfaces
takes place. Simultaneously, the values computed at
point 4 overwrite the previous boundary condition
at point 1.

If the communication is halted for a specified in-
terval, then the time-integration in Blocks [ and
II proceed with the boundary condition remaining
frozen at the values received during the past com-
munication step. Hence an error is introduced into
the time-integration procedure in both blocks. I the
semi-discretized Euler equations can be expressed as
follows:

dQ

dt

for a linearized operator A-, the error obeys the same
difference equation as the solution. Hence, if we call
the error X, the following relation is valid:

=AQ ’ (10)

dX
-d—:-_A-X (11)
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Figure 11: Model of Feedback System

One can trace the propagation of the error
through this model. Assume that X;(n) is an er-
ror in the boundary condition, first introduced at
a time-step n, at point 1. If the boundary condi-
tions are held fixed for k time-steps, this error will
propagate upstream in Block I to point 2. Since
the error also obeys the same discretized equation
as the solution for a linear operator, the error will
be modified by the time it propagates to point 2to
become X;(n+ k) after k time-steps. When commu-
pication occurs at this instant, Xs(n + k) is replaced
by Xa(n + k). Over the next k steps. the error at
point3propagamt-opoim4mda.lsogeumodiﬁed
by the integration process to become Xi(n + 2k).
Thus, when communication now occurs at n + 2k,
X1(n + 2k) becomes equal to Xy(n + 2k) and this
process repeats itseif. This can be summarized with
the following set of expressions:

Xan+k) = h-Xi(n) ,

Xs(n+k) = Xaln+k)
Xn+2k) = fa-Xs(n+k) , (12
Xin+2k) = Xy(n+2%)
Xi(n+2k) = h-fi-Xi(n)

where f,- and fy- are operators representing the in-
tegration process inside each block. The last expres-
gion in equation (12) provides a relationship between
the error introduced at time-step n and n + 2k. It
will be shown in the following section that spatial
oscillations produce a negative feedback which can
be approximated with the following relationship:

fHi-farm-1 (13)

6

Based on this approximation, one can describe the
ocacillations in time at a boundary point by the fol-
lowing reiationship:

Xi(n + 2k) = —Xi(n) (14)

Taking a Z-Transform of the above relation leads to:
22X (z) -X(z)

(1+2%)X(2) 0 (15)

2 = -1

The solution of the above equation provides 2k§ =
9mx + x,m = 0,1,2,3.... where z = re/’. The
fundamental solution is 2k# = «, corresponding to
m = 0. Hence the fundamental frequency of oscilla-
tions corresponds to a period of T = 4kAL.

Origin of the Negative Feedback

As suggested in Equation 13, the net effect of the two
operators f- and f3- leads to a system with nega-
tive feedback. In order to understand this behavior
one has to study the difference representation of the
employed three-stage explicit Runge-Kutta scheme.
For a wave traveling downstream with a wave speed
of u + a, one can write a difference equation as fol-
lows:

%?— = (u+a)9—‘-‘2—;§*—*l (16)

where (u + a) is a constant. The explicit Runge-
Kutta difference representation yields:

= asQf_3 —a2Qi; — a.Q,
+(1 + 2a2)Q7
+84Q%, +03Q%; +asQ (17)

+1
Q?

where

-0.15¢
0.135¢* - 0.5¢

0.045¢%
{u + a)At
Az

(18)

as

The difference equation (17) is then modified near
the boundaries and cast in matrix form as follows:

{aQ}
{aQ}

Q@ -Qr);i=23,.,N-1
[B{Qr) + {BYQr + {B}'Qr (19)
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where {AQ} denotes the vector of unknowns, N is
the total number of grid points, and Qr , Qr are the
left and right boundary conditions respectively. The
vectors {8}’ and {B}” have the following structure:
¢ & 3
-as

{BY ={ a | (20)

~az
-ay )

{B}" = ¢ (21)

\

In the above, a; = 0.5¢—0.045¢%; furthermore, a new
variable is defined as a3 = 0.09¢® — 0.5c. One can
also express the matrix [B) in the following form:

(B] = (22)

[ a3 a3 —a; —as ]

—as 209 a4 —aG32 —as

—a; ~aq 2070 a4 —G3 —as

s —03 —aq 203 G4 —G3 —Gs
as —073 —a4 207 a4 —0Gy —ag

as —03 —a4 203 a4 —a3 —as
as —a03 —G4 207 a4 —%a

as —a3 —aq 203 ay

ag —a3 —ay Gy |

3

An eigenvalue-eigenvector decomposition of the
matrix (B)] shows that the scheme is stable since
the real part of all the eigenvalues is negative ex-
cept for one which is equal to zero. The zero eigen-
value corresponds to the highest frequency spatial
oscillation with a wavelength of A = 24z and hence
there is no damping for these high frequency spatial
waves. This behavior was also observed for Euler
equations from the linearized stability analysis de-
scribed in Figure 3. The introduction of an error
QL on the left boundary excites the low frequency
waves which are convected with little damping for
positive c. Thus, one can state that f,- ~ 1. On the
other hand the introduction of an error Qr at the
right boundary excites the 24z wave again with no
damping. This resulta in f3- s —1.

The behavior described above can be illustrated
by a simple one-dimensional example as shown in
Figure 12. An error of unit magnitude was applied
at both boundaries of a block, and ¢=0.9 was chosen
to advance for n = 30 time steps. It can be seen from

7

Equations 20 and 21 for ¢ = 0.9, all three non-zero
entries in {B)' are positive, while the signs of the
three non-zero entries in {B}” alternate. Therefore,
a disturbaace applied on the left boundary gets con-
vected downstream with little damping as expected.
On the other hand, the one applied on the right
boundary produces a high frequency oscillation of
wavelength 2Az which travels upstream again with-
out being damped by the difference scheme.

15 v
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=)y ——
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Grid Point Index

Figure 12: Convection of a disturbance applied on

the two boundaries of a block by the Runge-Kutta

Scheme

In the above model equation, no artificial viscosity
was introduced. In the solution of Euler equations,
when an error is introduced on the boundary of a
subsonic block, after waiting a reasonable number of
time-steps, one can expect that it will appear at one
grid point downstream of the boundary with approx-
imately the same magnitude. On the other hand,
the same error will appear at one point upstream of
the boundary with a negative sign. This behavior
is distinctly obeerved for subsonic flows in the so-
lution of the Euler equations. For supersonic flows,
waves traveling upstream are damped by adding nu-
merical viscosity; thus, the feedback and resulting
oscillations are negligible.

At this point, one can also comment on the dif-
ferences observed in the frequency response of the
density variation for k = 10 and k = 20 as shown
Figures 6 and 8. If the communication is delayed
too long, there is a coupling between the waves orig-
inating from different boundaries as well as waves
reflecting back. Thus, for k = 20, one observes a
more complicated frequency response.

Filtering of the Oscillatory Signals

From the discussion of the previous sections, it can
be deduced that the freezing of the boundary coan-
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ditions introduces a high frequency error into the
solution with a distinct period of 4kAt. Since the
frequency of the noise is known, one can design a
low-pass filter to eliminate the high frequency noise
and allow the solution to pass through. To design
a simple filter, a moving average was employed. As
described in Figure 11 the computed solutions at
points 2 and 4 are filtered as follows:

r 13 n-jxk
b: = 'Eoz

=0
— 1322
@ o= LA (23)
j=0

where k is the communication interval. The right
hand side of Equation 23 involves the raw data cal-
culated at every k time-steps at points 2 and 4. In-
termediate time-steps are not utilized in filtering.
The left hand side defines the filtered value of the
boundary condition which is communicated to the
neighboring block. This operation corresponds to
applying an Finite Impulse Response (FIR) filter,
where its z-transform can be expressed as follows:

27V 42273 43273 +4z 4+ 328 + 2270+ 17

b= 16
(24)

which is always stable.
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Figure 13: Frequency response of the FIR filter

Normalized Gain

In Figure 13, the normalized gain of the filter is
plotted against non-dimensionalized frequency w°.
As can be seen from this figure, the selected fil-
ter provides zero gain for a non-dimensionalized fre-
quency of unity or T = 4kAt.

8

Steady Flow

For the steady flow test case described previously,
a base case solution is obtained initially by com-
municating every time-step. Then, first, the com-
munication is frozen for 10 steps and the resuiting
solution is filtered at every communication step be-
fore being sent to the neighboring interface. Local
time-stepping is used inside each block for both the
base case and the case with the filter. Figure 14
shows the density variation at the mid-point of the
subsonic interface in block 9 in Figure 4. As can
be seen from this figure, the same steady state solu-
tion is reached after 5000 time-steps for both cases.
There are some differences in the transient behavior
of the solution. Figure 15 shows the frequency spec-
trum of the same density for both solutions. One
can observe that the solutions are accurate within a
certain frequency range. Second, communication is
frozen for 20 steps and the solution is again filtered
before communication. Figure 16 shows the result-
ing density variation for the same subsonic interface,
and Figure 17 shows the frequency distribution.

25 & 500 1000 13002000 2500 3000 3500 4000 4500 5000
Werasion Number
Figure 14: Comparion of solutions with filtering
(% = 10) and the base case

This steady flow case is solved on varying num-
ber of processors to compare the savings in elapeed
time due to the reduced communication. Two sys-
tems were used to solve the cases; i) an IBM SP2
tower with 32 processors using a fast communica-
tion network (HPN) located at Poughkeepsie, New
York, and ii) an [BM SP1 tower with 16 processors
using an ethernet based communication network lo-
cated at NASA LeRC. The timings obtained are pre-
sented in the form of speedup and efficiency which
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Figure 15: Comparison of the frequency response of
solution with filtering (k = 10) and the base case
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Figure 16: Comparion of solutions with filtering
(k = 20) and the base case

can be defined as follows:
_ Elapsed Time with 1 Processor (k=1)
Speedup = EnapeedTimewithumeemou( )
25
Efficiency = Speedup (26)

Figures 18 and 19 shows the speedup and effi-
ciency for the steady case for k = 10 with filtering
and the base case on both types of networks. As
can be seen from these figures, a high level of ef-
ficiency is maintained, even when a small problem
with 4,592 grid points is running over 6-12 proces-
sors. Speedup is improved considerably, since the
communication cost is reduced by 90-95%. The ef-
ficiency improvement is significant, mainly due to
the relative importance of the communication cost
for the base case. It is also observed that for a slow
network like ethernet, communication dominates the
total elapsed time for the computation of the prob-
lem, and hence dramatic improvements are obtained
in the speedup and efficdency when communication
is reduced by 90%.
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Figure 17: Comparison of the frequency response of
solution with filtering (X = 20) and the base case
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Figure 18: Comparison of speedup with filtering
(k = 10) and the base case

Unsteady Flow

An unsteady flow test case in chosen as described
previously. A base case was run by communicat-
ing every time-step to obtain an accurate solution.
Between 400-1800 time-steps were employed to inte-
grate over one period of the oecillation for different
blocks. Figure 20 illustrates the variation of density
at the midpoint of the subsoaic interface of biock 9
in Figure 4 for k = 10 and k = 20 without filtering.
For k = 10, unsteady response is quite accurate. In
this case, it was observed that one can freeze the
boundaries for k = 10, and obtain reasonably ac-
curate solutions even without filtering as shown in
Figure 20. This may be due to the fact that the
time-steps for the unsteady flow test case are much
smaller than those for the steady flow case. In the
same figure, it can be seen that communicating every
20 time-stepe introduces an error which eventually
causes the solution to diverge. For this case filtering
can be used to eliminate the error and recover the
wave of frequency 100 Hz. Figure 21 illustrates the
variation of density at the same location in block

American Institute of Aeronautics and Astronautics



e

X ——
[ ™} ——
2 et — ]
kal ——
§ 198 ¢ 1
1}
08}

o e n o
0 2 4 L] 8 10 12 14 18

Number of Procsssors

Figure 19: Comparison of efficiency with filtering
(k = 10) and the base case

9 for two filtered cases with k = 10 and k = 20
in comparison with the base case. As can be seen
from Figure 21, the filtering introduces a slight lag
for k = 20. The design of another filter may elimi-
nate the lag observed in the k = 20 case. Also, for
the same case, inaccuracies are observed which are
associated with the startup transients.

The frequency spectrum of the solution for the
base case and for two filtered cases with £ = 10
and 20 are shown in Figures 22 and 23. There is
very little difference between the frequency content
of these three solutions.
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Figure 20: Comparison of the solution for k = 10,20
without filtering

Figures 24 and 25 show the speedup and efficiency
for the computation of the unsteady flow case on
varying number of processors for both types of net-
works. Again it can be seen from the figures that
reduction of the communication by 95% contributes
to a significant improvement in the speedup and ef-
ficiency. However, the improvement in speedup and
efficiency is not as high as compared to the steady
flow case. This is because of the difference in the
time-stepping schemes between the two cases. In the
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Figure 21: Comparison of the solution for the base
case and k = 10,20 with filtering
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Figure 22: Frequency response of solutions for the

base case and k = 10 with filtering

steady flow case, local time-stepping is used which
means for k = 10, communication takes place every
10 computation steps for all interfaces. In the un-
steady flow case, each block picks a certain time-step
which can be different from other blocks. Hence,
for k = 20, the number of computation steps be-
fore communication occurs can vary from 4 to 20
for various blocks. This can cause communication
bottlenecks which could account for the lower effi-
ciency improvements when compared to the steady
flow case.

Conclusions

In this paper, a filtering procedure is presented
to improve the efficiency of parallel computation
of Euler equations using an explicit scheme. It is
demonstrated that, in terms of obtaining an accu-
rate solution, the time-step chosen by the stability
condition for each block may be too restrictive. One
can reduce the communication between the blocks
by 90-95% and still obtain an accurate solution.
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Figure 23: Frequency response of solutions for the
base case and k = 20 with filtering
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Figure 24: Comparison of speedup with filtering

(k = 20) and the base case

o

The filtering procedure coupled with the variable
time-stepping schemes enables efficient utilization of
the parallel algorithm for both steady and unsteady

flows.

It is illustrated that one can communicate with
neighboring blocks only when necessary and im-
prove efficiency. Heterogeneity of the flow-field and
the computer systems is exploited for this purpose.
Study of the interface conditions in the frequency
domain provides insight into the problem. Simi-
lar filkers can be developed for schemes other than
Runge-Kutta schemes.
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Filtering Techniques in Parallel Computing

A. Ecer, H.U. Akay and N. Gopalaswamy

CFD Laboratory
Purdue School of Engineering and Technology, IUPUI
Indianapolis. Indiana 46202

1. INTRODUCTION

Our current research efforts are aimed at improving the efficiency of computing on parallel comput-
ers. In working with MIMD machines, we have chosen the path of domain decomposition as a basis
for parallel computing. The problem to be solved over a given domain is parallelized by means
of dividing the domain into many sub-domains, called blocks, and solving the governing equations
over these blocks. The blocks are connected to each other through the inter-block boundaries,
called interfaces. These blocks can then be allocated to certain processors in the parallel comput-
ing environment, and the solution of the problem over the entire domain will be achieved by solving
the governing equations over each block in parallel (Akay 1993, Chien 1994, Gopalaswamy 1995,
1996).
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Many sub-problems. one for each block, are solved in parallel while they have to communicate
in terms of boundary conditions specified at their interfaces. Such an approach can be simplified by
assuming that all the blocks are of equal size and require identical computational effort, and that all
the processors have identical computation and communication resources. In such a case, one would
perform identical computations on each processor and after exchanging messages synchronously
proceed towards a solution in a parallel fashion. Such an approach of homogeneous parallel com-
puting may not be very efficient. First. the available computer resources may be heterogeneous.
Second. many large problems which require parallel computing are rather complex and cannot be
defined as a homogeneous problem. For the case of fluid mechanics problems. each flow region
(block) may require a different level of grid refinement, solution strategy and computational effort.
Therefore. we expect that the assumption of homogeneity is too restrictive. Although it simplifies
the parallelization process. it produces inefficiencies.

Our efforts during the last two years are aimed towards developing schemes which are optimum
locally in each flow region. We chose to employ filtering as a way to determine the accuracy and
stability conditions for each block and improve the efficiency of computations. Implementation of
filtering techniques for improving communications between the blocks is discussed in Gopalaswamy
(1997). Tn this paper. we discuss the utilization of filtering for increasing the efficiency of compu-
tations inside each block as related to the accuracy and stability of a given numerical scheme.

2. FILTERING OF BLOCK BASED SOLUTIONS

In using a given numerical scheme. one can improve the efficiency of computations by studying the
spectral behavior of the solution. Multi-grid techniques employ coarse grids to act as filters for the
solution on fine grids and yet speed-up the rate of convergence. Here, we will be applying classical
filtering techniques.

The first problem to be studied is the stability of computations inside a block. For each block,
the stability coudition as specified by the Courant number calculated for all grid points dictates the
time step for the block. For obtaining a steady state, one can sacrifice time accuracy and choose a
local time step for each grid point. For explicit schemes, the time step chosen by the stability limit
is too restrictive. On the other hand, it is known that for many schemes the stability limit can be a
function of the spatial wavelength of the Fourier components of the solution. If one can filter some
of the high frequency components of the solution, the time step can be increased and the efficiency
of the algorithm can be improved, as it will be discussed below for two different schemes. It is also
observed that since the discretization errors are larger for the high frequency components of the
solution. filtering may not destroy the accuracy of the solution. One then filters the high frequency
components of the output in space before proceeding with the next time step. If the objective is
to calculate a steady state solution, once the solution converges to a steady state by using a large
time step. the filter can be reduced or removed and integration may continue with a smaller time
step. This is similar to the implementation of the multi-grid method. when the filter is switched
on and off to obtain an accurate solution with faster convergence.

2.1. FILTERING FOR ACCURACY

The following convection-diffusion equation is studied as a one-dimensional example, for the pur-
poses of investigating the usefulness of a block-based filter to improve stability conditions:
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Wy + UW, = QWzy (1)

First a difference equation is obtained by a forward difference approximation of the time-derivative,
upwind differencing for the first order space derivative, and centered differencing for the second
order space derivative. The resulting difference equation can be written as follows:

+1 .
w? — wln + Uw — w?—l — awln-l-l — Qw:l + w?—-l (2)
At Ar (Ax)?

A von Neumann type of analysis leads to the following expression for the single-step amplification
factor:

Wit
l— =G = (1 —c—2d) + (c+ 2d) cos § — Icsin® (3)
w;
where ¢ = u% and d = au‘\;) . The equation for G is that for an ellipse centered at 1 —c — 2d with

a major axis of ¢ + 2d and a minor axis of ¢ when drawn on the complex plane. Figure 1 shows a
sketch of G.

1G1

0-5 i . i
0 W12 /6 w4 w3 B2 L

Phase Angle 8

Figure 1: Representation of the function G in the complex plane.

If we define a wavenumber k; = A—"I- over a uniform grid, then we can see that all wave numbers
are stable when the ellipse lies inside the unit circle on the complex plane. The three stability
conditions are:

e ¢c+2d < 1;implies that the center of the ellipse will lie on the positive real axis.

e ¢ < 1 ;implies that the minor axis of the ellipse is less than the radius of the unit circle.
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e ¢ < ¢+ 2d : implies that the curvature of the ellipse is smaller than the curvature of the
unit circle close to § = 0.

The first condition combined with the second is the most restrictive. The last condition is also
important since it directly affects the low frequency waves ( k; = 0). As can be seen from the
figure, violating the first two conditions allows the ellipse to grow on the negative real axis as
well as the imaginary axis. Only waves up to a value of 8, are stable, for other values of 8, the
amplification factor G lies outside the unit circle and hence grow with every time-step. Since
instability is caused by the high-frequency waves, they can be filtered out. However it is important
to preserve the low-frequency waves, and hence the last condition must always be satisfied.

The following example problem was studied in order to obtain a better understanding of the
above phenomenon. A sinusoidal signal was convected and diffused in a large domain  with a
constant speed u = 0.02, and Q = [—3.5], with Ar = 0.02 as shown in Figure 2. The diffusion
constant o was varied in order to yield different diffusion numbers d.

U=0.02 m/s —>

Magnitude
[=)

-5

X o

Figure 2: Sinusoidal signal convection and diffusion.

The value of cosd, is plotted in Figure 3 for various ¢ and d. This can be used to find the cut-off
frequency above which waves become unstable.

Figure 3: Values of cos8, > _2;:;14) n 2:12-;1.
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A low-pass filter was designed to filter out high frequency waves. A combination of ¢ = 1.01 and
d = 0.03. which corresponds to a 8y = 78°.1.37 rad. was chosen to advance the solution for 30 time
steps. The sinusoidal signal is convected over a distance 50Ar = 1.0 and simultaneously diffused.
For these conditions. the system slightly exceeds the stability limit and one can still integrate the
equations for a short period. In Figure 4, the solution after 50 time-steps with and without filtering
is shown. It can be seen that the high frequency error has been damped out by the filter yielding
a stable solution. The frequency content of both solutions is displayed next in Figure 5 where the

Unfittered ———

1
2 os
>
»
5 0 F——————
3
EN)-
2
= -1
15 F
.2 A
0 0.5

Magnitude of Signal

Figure 4: Computed solution after 50 time steps for c=1.01 and d=0.03.

error shows up in the high frequency region. The filter transfer function is also plotted in the same
figure, yielding zero gain for the high frequency region.

1.2

Normalized Gain

2.2. FILTERING FOR ACCURACY AND STABILITY
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Figure 5: Frequency response of the solutions.

Filtering techniques can be employed for improving both the accuracy and stability of a numerical
scheme simultaneously. When the time-step is increased, one has to control the level of accuracy.

A multistage Runge-Kutta method was considered as a second example.

The one-dimensional

convection equation was used to study the behavior of this scheme.

ws +uwy, =0

(4)
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dw, Wi-| — Wiy

qu SA L = RHS (3)

The spatial derivative is first discretized with centered differences and the Runge-Kutta method is
applied as a separate time-integration of the semi-discretized equation above. A three-stage variant
of the Runge-Kutta method leads to the following set of equations:

wi(0) = w!

wi(l) = w(0)+0.6AtRHS(0)

wi(2) = w(0) + 0.6A¢RHS(1) (6)
wi(3) = wi(0) + AtRHS(2)

w?“ = w;(3)

where At is the time-step used for the temporal integration. Assuming u is a constant, a von
Neumann type of stability analysis leads to the following stability criterion:

ult
inf =——<1.
csin Ay S 8 (7

where # is the phase angle resulting from a Fourier decomposition of the solution in the spatial
frequency domain. Correspondingly, the stability polynomial becomes:

G(z) =1 —z+0.62> —0.3623 (8)

where z = [c¢sin@. In Figure 6 a plot of the stability polynomial is shown for two Courant numbers
¢ =0.9 and ¢ = 3.0.

From the curves it can be seen that the amplification factor |G/ is close to unity for both very low
frequency (9 = 0) and very high frequency (6 = m) waves. The highest frequency (m) corresponds
to a wavelength of 2Ar. The stability polynomial indicates that waves with a wavelength of 4Az
are the ones to become unstable first.

Utilizing a higher Courant number improves the efficiency of a numerical algorithm, but most
of the high frequency waves are unstable for higher Courant numbers. However, using a filtering
technique to identify and correct the unstable waves allows one to convect a group of waves at higher
Courant numbers. If we assume that ¢=0.9 provides an accurate solution. we have to design a digital
filter to convert G(3.0) to G(0.9) to obtain the same level of accuracy. We would like to construct
a G for a Courant number of 3 which approximates the G of ¢ = 0.9, i.e. G(3.0) = G>3%(0.9).
Figure 7 illustrates the accurate transfer function, G(0.9) and the desired transfer functon for the
filter, GF=G?34(0.9)/G(3.0), where G(3.0) is the transfer function for the Runge-Kutta operator
with ¢ = 3.0. Also shown in this figure are the transfer function for the derived digital filter,
GFD, and the combined transfer function of the Runge-Kutta operator (¢ = 3.0) with the filter,
GFC=GFD*G(3.0). As can be seen from this figure GFD represents a low-pass FIR+IIR type
filter.
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o 05 t 15 2 25 3 15
Phase Angie in Radians

Figure 6: |G| for 0 < @ < 7 and ¢ =0.9,3.0.

The one-dimensional convection equation is employed to convect the sine wave by using the
3-stage Runge-Kutta scheme at a Courant number ¢ = 3.0 following the approach outlined above.
The solution of the problem is plotted in Figure 8 at different time-steps. The developed digital
filter enables the convection of the waves without diffusion and without violating the conditions for
stability.

3. CONCLUSIONS

As discussed in this paper. efficiency of a given solution scheme can be improved by filtering. Our
intent is to employ filters locally for each block in parallel computations. We can both monitor and
control the speed and accuracy of the computations inside each block by the proposed scheme.

REFERENCES

Akay H.U., Blech R.A., Ecer A.. Ercoskun D., Kemle B., Quealy A. and Williams A. (1993)
A Database Management System for Parallel Processing of CFD Algorithms, Parallel CFD 92,
Edited by R.B. Pelz, ev al.. Elsevier, Amsterdam, pp. 9-23.

Chien Y.P, Ecer A., Akay H.U.. Carpenter F. and Blech R.A. (1994) Dynamic Load Balancing on a
Network of Workstations for Solving Computational Fluid Dynamics Problems, Computer Methods
in Applied Mechanics and Engineering, vol. 199, pp. 17-33.

Gopalaswamy N., Chien Y.P., Ecer A., Akay H.U., Blech R.A. and Cole G.L. (1995) An Investiga-
tion of Load Balancing Strategies for CFD Applications on Parallel Computers, Parallel Computa-
tional Fluid Dynamics, Edited by A. Ecer et al., Elsevier, Amsterdam, pp. 703-710.

Gopalaswamy, N., Akay H.U., Ecer A. and Chien Y.P. (1996) Parallelization and Dynamic Load
Balancing of NPARC Codes. A7AA Paper No. 96-3302, 32nd ATAA/ASME/SAE/ASEE Joint
Propulsion Conference. Lake Buena Vista, FL.



8 A. ECER, HU. AKAY and N. GOPALASWAMY

9 T G(09) —— 25 ' GF ——
8+ G(3.0) —»— GFD ——
7+r 1 :
6t ' 1 j
— 54 c
G} T
- 4}t (6]
3t
2+
1
0 . T2 IS n
0 0.5 1 1.5 2 25 3 35 0 05 1 1.5 2 25 3 35
Phase Angle in Radians Phase Angle in Radians

Figure 7: Transfer functions for the Runge-Kutta operators and the filter.

Gopalaswamy N., Ecer A.. Akay H. U. and Chien Y.P. (1997) Efficient Parallel Communication
Schemes for Explicit Solvers of NPARC Codes, AT44 Paper No. 97-0027, 35th Aerospace Sciences
Meeting, Reno, Nevada.



FILTERING TECHNIQUES IN PARALLEL COMPUTING

Magnitude

Figure 8: Solution after 50 steps with filtering and ¢ = 3.0.



AlAA 98-0616

Digital Filtering Techniques for Parallel

Computation of Explicit Schemes

A. Ecer, N. Gopalaswamy, H.U. Akay and Y.P. Chien
Computational Fluid Dynamics Laboratory

Purdue School of Engineering and Technology, IUPUI
Indianapolis, IN

36th Aerospace Sciences
Meeting & Exhibit
January 12-15, 1998 / Reno, NV

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics
1801 Alexander Bell Drive, Suite 500, Reston, Virginia 20191-4344



DIGITAL FILTERING TECHNIQUES FOR PARALLEL
COMPUTATION OF EXPLICIT SCHEMES

A. Ecer, N. Gopalaswamy, H.U. Akay and Y.P. Chien

Computational Fluid Dynamics Laboratory
Purdue School of Engineering and Technology, IUPUI
Indianapolis, Indiana 46202

Abstract

A computational technique is presented for design-
ing a filter to improve the computational efficiency
of a numerical scheme. For an explicit scheme, the
integration time step is increased, causing several
waves to become unstable. These waves are filtered
without disturbing the accuracy of the solution and
the accuracy of the remaining waves are controlled.
The scheme is applied to the solution of the Euler
equations by using the NPARC code.

Introduction

For the solution of complex flow problems, imple-
mentation of a computational algorithm requires
several important choices. First, a computational
grid is generated which reflects the local complexity
of the flow with appropriate grid refinement. Then,
the computational scheme is adjusted for accuracy
and efficiency for the probiem n hand based on pre-
vious experience. The content of numerical viscosity
is usually tested and the time step of integration is
prescribed for each problem. In this paper, the uti-
lization of digital filtering techniques is described for
treatment of such accuracy and efficiency problems.

The flow problem is defined in a block-structured
fashion.!'? The flow field is divided into sub-domains
called “blocks” which are connected at “interfaces.”
The algorithm employed to calculate the flow field
inside each block is called the “block solver.” The ac-
curacy and efficiency of the numerical scheme is de-
fined locally for each block solver. The communica-
tion between the block solvers are handled by “inter-
face solvers.” This approach is suitable for parallel
computing where available computer resources are
assigned to each block solver as required by the com-
plexity of the flow in that region.® Figure 1 shows a

Block Solver Interface Solver: Interface Solver Block Solver

ALy (2)
A12) :
at;é2,1)

Block (1) Interface (1): Interface (2) Block 2)
A1) Axb(2)

Figure 1: Parallel execution with block and interface
solvers.

schematic of the relationship between the block and
interface solvers in a parallel environment. The time
step in each block is denoted by Ats, the time step
for communication from the parent block to interface
is denoted by Aty, the time step for communication
from an interface to its parent block is denoted by
At; and the time step for communication between
interfaces is given by At;.

In this paper, the developed techniques were im-
plemented to explicit schemes. Explicit schemes are
known to have restrictions on the time step of inte-
gration based on the CFL stability condition. Asone
studies this condition carefully, it states that the sys-
tem is stable for waves of all possible frequencies on
a given grid. On the other hand, it is known that the
high frequency waves are not accurately represented
by a given difference scheme. Thus, the CFL con-
dition implies that these waves will be numerically
integrated even though they may not be accurate.

In the developed scheme, the CFL condition is re-
laxed. The time step is increased such that the sta-
bility of only certain low frequency waves are main-
tained. The unstable high frequency waves are fil-
tered. As a result of this procedure the efficiency of
the computations are increased by obtaining stable
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Figure 2: Parallelization with GPAR

solutions at higher time steps without losing accu-
racy.

The block-filtering scheme is defined for each indi-
vidual block. A spatial filter is employed inside each
block. This scheme replicates some of the functions
of multi-grid schemes. In this case, only a single
grid is utilized. Also, the choice of the filter is re-
lated quantitatively to the spectral contents of the
solution. At each time step, after the filtering oper-
ation, there is a mismatch at the interfaces for the
boundary conditions for each biock. This error is
also filtered by using a previously developed tempo-
ral interface filter.* Since needs for accuracy will be
different for steady state versus time-accurate solu-
tions one can filter more waves and use a larger time
step if time-accuracy is of no concern.

The NPARC code® was utilized to demonstrate
the developed filtering procedure. This code was
parallelized by using some parallelization tools
(GPAR, DLB} developed previously.? PVM® is
used as a low level message passing library to han-
dle parallel communication and execution. Fig-
ure 2 illustrates the relationship between the three
components of the parallelized application program.
An explicit three-stage Runge-Kutta time stepping
scheme was selected. For the chosen two- and three-
dimensional inlet problems the CFL limit of C =
1.0 was observed for both steady and time-accurate
problems. This limit was then extended to higher
Courant numbers by using the developed filtering
scheme.
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Figure 3a: Amplification factors for c=0.4, d=0.16

Accuracy and Stability of
Explicit Schemes

To describe the basics of the developed scheme, the
following one-dimensional convection-diffusion equa-
tion is considered first:

Wy + uw; = QW2 (1)

By using forward differencing in time, upwind and
central differencing in space, one can write the fol-

lowing difference equation:
wit! —wp | wp-wp, | wh - 2uf vul,
At Az {Azx)?

(2)
A von Neumann type of analysis leads to the fol-
lowing expression for the single-step amplification
factor:
wht!
i =G=(Q1-c-2d+(c+2d)cosf; — Icsinb;)
At At : 3)
where c = u5z and d = arAsyr and @, is the phase
angle in space. The equation for G is that for an
ellipse centered at 1 — ¢ — 2d with a major axis of
¢ + 2d and a minor axis of ¢ when drawn on the
complex plane. Figures 3a and 3b show a sketch of
G for two combinations of ¢ and d.” The scheme is
stable for the first case. The value of 8, for which
the scheme becomes unstable is approximately 120
degrees for the second case.

7
w;

We can see that G is stable for all phase angles
0. when the ellipse lies inside the unit circle on the
complex plane. The three stability conditions are:

1. ¢+2d < 1;implies that the center of the ellipse
will lie on the positive real axis.
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Figure 3b: Amplification factors for ¢=0.8, d=0.32

2. ¢ < 1; implies that the minor axis of the ellipse
is less than the radius of the unit circle.

3. & < ¢+ 2d ; implies that the curvature of the
ellipse is smaller than the curvature of the unit
circle close to 8, = 0.

The first condition is the most restrictive one. The
last condition is also important since it directly
affects the stability of the low frequency waves (
0. ~ 0). As can be seen from Figure 3b, violat-
ing the first 2 conditions allows the ellipse to grow
on the negative real axis as well as the imaginary
axis. For the second case, only waves up to a value
of 8; = 120 degrees are stable, for other values of
8., the amplification factor G lies outside the unit
circle and hence grow with every time-step. If one
can filter these high frequency waves, it is possible to
obtain stable and accurate solutions at such Courant
numbers. However, it is important to preserve the
low-frequency waves, and hence the last condition
must always be satisfied.

If one considers the accuracy of the convection-
diffusion equation Eq. (2), the spectrum of the dif-
ferential equation in Eq. (2) can be compared to
that of the difference equation as follows:

Gezact = gawaAt (cos(wzuAt) — Isin(w;ult))
(4)
Gnum = (1 —c~2d+ (c+2d) cos 8 — Icsinb.) (5)

where, w; = 8;/Az.

In Figures 3a and 3b the plus (+) symbols denote the
amplification factors corresponding to wavelengths
of 2Az,4Az, and 8Azr. Since the difference equa-
tion has no imaginary components, the amplification
factor is symmetric about the real axis. As can be
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Figure 4a: Spectral decomposition of amplification
factors for ¢c=0.4, d=0.16
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Figure 4b: Spectral decomposition of amplification
factors for ¢=0.8, d=0.32

seen from the figures, even for low Courant num-
bers, accuracy of high frequency components of the
solution is not very high. Figures 4a and 4b show
the magnitudes of the amplification factors for both
cases. Even though the magnitude responses of the
exact and numerical schemes are close, their phase
is different even for low frequency waves.

Also, steady state solutions of the two equations
can be compared in a similar manner. Figure 5
shows the steady state solution of the convection dif-
fusion equation for boundary conditions 0 and 1 at
each end of a domain of length 1.0, as computed
from Eqs. (1) and (2). The spectral decomposition
of the error is shown in Figure 6. The accuracy of
the steady state solution is also dominated by the
low frequency waves. A similar spectral decom-
position of the three-stage Runge-Kutta scheme for
the one-dimensional, inviscid, convection equation,
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Figure 7a: Spectral decomposition of the amplifica-
tion factor of 3-stage R-K scheme
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Figure 7b: Spectral decomposition of the amplifica-
tion factor of 3-stage R-K scheme

(a = 0), as obtained through a von Neumann sta-
bility analysis, is shown in Figure 7a for different
Courant numbers. The amplification factor for the
exact solution for the convection equation is the unit
circle. For C=1, the scheme is stable for all waves,
the numerical errors are maximum for waves of 4Az
or a phase angle of 90 degrees. This scheme is time
accurate for the low frequencies. For high Courant
numbers, the scheme is stable for only a range of
low frequencies. For C = 6, the magnification factor
increases considerably as shown in Figure 7Tb. Here
the objective is to filter such high frequency compo-
nents of this solution and obtain stable results.
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Numerical Integration of
Euler Equations

The derivations will be restricted to the axdsym-
metric form of Euler equations, dropping the viscous
terms of the Navier-Stokes equations for brevity.

8Q 0E OF

at+-6-;+-é;+ﬂ=0 (6)
7.9 . g1
Q=3 5 E=35&E+&F) )
= H _ 1
H——j ; F—j('kE+’lyF)
P . pv
pu pru
= s H=- 8
=\ w y)| p*+P ®
pe (peg+P)v
pu pv
pu’ + P o pyu
E— puv 1F_ pv2+P (9)
(pee + P)u (pe: + P)v

where J is the Jacobian of coordinate transforma-
tion. The three-stage Runge Kutta time-stepping
scheme is written as follows:

8Qi;
5L = RHS (10)

_Eiyj-Eiy  Fija—Fjin 5
RHS = TY: + 2An H;
(11)

Qi‘j(l) = Q,-J(n) + 0.6At RHS(H)
Qi;(2) Qij(n) + 0.6At RHS(1) (12)
Qij(n+1) = Qij(n)+ At RHS(2)

where central discretization is used for evaluating
the source term in Equation (11) for each coordinate
direction and n denotes the time level or iteration
level.

Stability of the Runge-Kutta Scheme

For the purposes of a linearized stability analysis,
the inviscid fluxes along the coordinate directions are
transformed according to the following relationships:

9E _9E2Q _ ,9Q

a9 ~ 8Q I B

OF _0F8Q _ 89

dn 8Q on an
For the purposes of the stability analysis, the source
term H;; is neglected. Expanding the solution in
a Fourier series assuming periodic boundary condi-
tions yields:

(13)

(14)

Ne—1 No—1

Qii= Y. 3 Qim(t)eerie!tnmi (15)

=0 m=0

where @ is the amplitude of a particular harmonic
and N¢, N, are the number of grid points in the §
and 1 coordinate directions respectively. Consider-
ing the stability of a single harmonic, the amplifi-
cation matrix G of the harmonic can be obtained
as:

An+1
G(¢.8,) = QQn
= (Y +AtN + 0.6A£N? +0.36At°N?)
N = -I(A"sin(6¢) + B"sin(4,)) (16)

where, Y is the identity matrix, and 8¢ and 8, are
the spatial phase angles in the £ and n coordinate
directions respectively. Matrix N is a function of
the local Mach number, flow direction and the grid
dimensions.

Design of a Block Filter

If one assumes that the numerical integration of
the Euler equations with a Courant number C' =



1 for the three-stage Runge-Kutta scheme provides
an accurate and stable solution, the objectives in
designing a filter can be summarized as follows:

e accuracy problem: the filter should provide ac-
curate solution for the low frequency waves for
C=pp>L

e stability problem: the filter should stabilize or
in this case eliminate the unstable, high fre-
quency portion of the solution with Courant
number C = p, with p > 1. These objectives
are achieved by filtering the residual vector af-
ter each numerical integration step.

Accuracy Problem

The accuracy problem is treated by comparing the
two solutions obtained by different time steps. The
change in a specific harmonic of the residual, when
integrated by C = 1 and after p time steps, can be
written as follows:

Qeth Q"—((Gc—l)’ Y)Q" (17

On the other hand, the change in a harmonic of
residuals after one integration time step with C' = p,
is equal to,

Q. -Q" = (Ge= - V) Q" (18)

We can define a filter which will equate these two
residuals.

F:(Q""” Q") Qrtr - @t (19

Thus, by multiplying the C = p residuals with this
filter, we can obtain accurate solutions for all waves
if such a filter can be designed.

The filter matrix is defined by the following ex-

pression:

F (Ge=1)? —¥) % (Go=p = Y)™

F(M’¢7BE10$‘|) (20)

The filter matrix F is a 4x4 complex matrix whose
elements are a function of the Mach number M, flow
angle with respect to the coordinate directions (£, n)
and the phase angles in each coordinate direction 6
and 6,,. It should be noted that, the solution Q"""
obtamed with Courant number p is unstable, and
the filtering operation shouid in theory produce a
stable solution for all frequencies.

Stability Problem

For a linear problem away from boundaries, the fil-
ter, as defined in Eq. (20), may provide a stable
and accurate computation of all waves. However,
for non-linear problems, it becomes very difficult
to design a filter which can stabilize all low and
high frequency waves and still provide accuracy. For
C = 6, Figure 7b illustrates that certain waves be-
come highly unstable. In this case, rather than ob-
taining an accurate solution for these waves, a more
practical approach of filtering these waves is pro-
posed. The filter matrix F is further modified by
multiplying it with a low pass filter which damps
out the high frequency components of the solution
including all unstable waves. The filter is designed
to provide an accurate solution only for the remain-
ing low frequency waves.

An eigenvalue-eigenvector decomposition of the
amplification matrix G yields the following CFL con-
dition for the spectral radius of G:

[Amax{G)| < 1 (21)
Camax = At (U sin(8¢) + V sin(8y)

+a,/(& + &) sin(0) + (72 +13) sm(a,,)) <18
(22)
where, U = Eu+§v,V =nzu+mpvandais the
speed of sound.

If N¢ and N, are the total number of grid points
in the £ and n directions respectively, the number
of low frequency waves to keep, n¢ and n, are cho-
sen such that for 8¢ = 21r—§ and 6§, = 2w g2, the
above stability condition is satisfied. The final filter
is defined as:

F. = EPF’ (23)
Flp = QY (24)

where, (1 is unity for all 8¢, 8, for which the scheme

is stable, and zero for all other waves for Q'ét’;

FFT Implementation

After approximately every n (e.g. n=100), computa-
tional steps, the filter matrix F (6, 8y, M, ¢) is eval-
uated for each block by computing an average Mach
number and flow angle ¢ in the block. The numer-
ical implementation of the filter matrix is of size
F(4,4, jmaz, kmaz) where jmaz and kmaz are the
total number of grid points in the £ and 7 coordinate
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Figure 8: Matrix norm of F for various Mach num-
bers and flow angles

directions respectively. The two-dimensional FFT
of the unstable residual obtained after a complete
Runge-Kutta cycle with a Courant number of p > 1
is computed using a separate subroutine.® Next a
matrix vector product of the unstable residual with
the filter matrix is carried out for each phase angle
8¢ and 4, Finally, the complex coefficients obtained
are damped further for the values of §¢ and 8, by
multiplying those coefficients with a very small num-
ber (= 0.01). The final coefficients are then used for
the inverse FFT to yield the filtered residual in the
spatial domain. The filtered residual is then added
to the solution Q™ to yield the stable and accurate
solution for Q3L". Figure 8 shows the computed
matrix norm for a 14x21 grid block for a range of
Mach numbers between 0.1 to 2.5 and a range of
flow angles 0 < ¢ < 7/2. From this figure it can be
seen that the filter matrix is more sensitive for su-
personic Mach numbers compared to subsonic Mach
numbers. A frequency response of the Fy, element
for ¢ = 10 degrees and for the same 14x21 grid block
is shown in Figure 9. As can be seen from this figure,
high frequency waves are filtered out.

Interface Filtering In Time

During the parallel computation of the flow problem,
the difference equation is integrated in time for all
the grid points of each block.?® The solution values
at the interfaces are held fixed during a Runge-Kutta
cycle, and information is exchanged after proceeding
one time-step. For small Courant numbers C < 1,
this freezing of boundary conditions at the interfaces
produces negligible oscillations in the solution in-

Figure 9: Magnitude of Fy, for ¢ = 10 degrees
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Figure 10: Feedback Model

side the blocks. However, for larger Courant num-
bers, e.g. 3 and 6, these oscillations are reinforced
by a feedback system originating from the Runge-
Kutta scheme applied at the boundary points.* Also,
one of the assumptions of the block filtering proce-
dure is that the solution inside the block is peri-
odic. The Fourier decomposition is inaccurate near
the boundaries if the non-periodicity is strong, which
produces discontinuities in the residuals across the
interfaces when information is exchanged. As dis-
cussed previously,* an error is introduced at the in-
terfaces which then forms a negative feedback sys-
tem. As an example, consider the pair of blocks in
Figure 10. If the semi-discretized Euler equations
can be expressed as follows:

a9
dt
For a linearized operator A-, the error obeys the
same difference equation as the solution. Let us call

—4-Q (25)



the error introduced due to the non-periodicity of
the solution across the interfaces as X.

dx
= -ax (26)

If X,(n) is an error in the boundary condition, first
introduced at a time-step n, at point 1, this error
will propagate upstream in Block I to point 2 at
the next communication interval. Assume it prop-
agates to point 2 to become X3(n + 1) before the
next exchange. When communication occurs at this
instant, X3(n + 1) is replaced by X2(n + 1). The
error at point 3 propagates to point 4 to become
X4(n+2).

Xaln+1) = fi-Xi(n) ,
X3(n+1) Xao(n+1)
Xin+2) = fo-Xs(n+1) , 27)
Xin+2) = Xin+2)
Xin+2) = fi-foa-Xu(n)

where f,- and f,- are operators representing the inte-
gration process inside the block. The last expression
in equation (27) provides a relationship between the
error introduced at time-step n and n + 2. It was
shown® that during the numerical integration, the
introduced error leads to a negative feedback which
can be approximated with the following relationship:

h-form -1 (28)

Based on this approximation, one can describe the
oscillations in time at a boundary point by the fol-
lowing relationship:

Xi(n+2)=-X(n) (29)
Taking a Z-Transform of the above relation leads to:

2X(z) = -X(2),
2 = -1 (30)

The solution of the above equation provides 28, =
2mm + 7,m = 0,1,2,3.... where z = re/%. The
fundamental solution is 28; = =, corresponding to
m = 0. Hence the fundamental frequency of oscilla-
tions corresponds to a period of T = 4At. The filter
developed previously* can thus be applied to this
signal to yield zero gain for this wavelength. The in-
terface filter is developed for an interval correspond-
ing to p where C = p > 1 is the Courant number
used inside the blocks. The solution at the interfaces
is sampled every communication step, which is equal

to p, and filtered based on averaging of the solution
stored for the current communication step and the
previous 3 communication steps. The filter is of type
FIR and its Z-transform looks like:

B(z) =
2 4227243273+ 4274 43275 42270+ 277
16
(31)
Test Cases

The following two test cases were considered:

1. An axisymmetric mixed-compression VDC
(Variable Diameter Centerbody) inlet is con-
sidered under a subsonic inflow of M=0.3 and
a subsonic compressor face outflow Mach num-
ber M=0.4. The inlet geometry supplied® was
modified by increasing the throat area to per-
mit subsonic unchoked flow throughout the in-
let. The 2D version of the NPARC code has an
option to handle axisymmetric flow also. The
reference inlet pressure is 117.8 1b/ft?, and the
reference inlet temperature is 395 Rankine. The
cowl-tip radius of the inlet, Rc=18.61 inches is
used to non-dimensionalize the lengths. The
grid for this inlet consists of appraximately 4500
nodes, and is divided into 15 blocks, all of ap-
praximately equal size as shown in Figure 11.
First a steady-state solution is sought using lo-
cal time-stepping for all nodes in each block
with a uniform Courant number of 1.0 for all
nodes. Then a Courant number of 3.0 is used
for all nodes and block and interface filtering
is switched on to obtain a stable steady state
solution.

2. The same geometry as defined in test case 1
is chosen, except the grid is refined 3 times in
the flow direction. Refined grid increases the
number of the stable waves and allows accurate
solutions even when the Courant number is in-
creased to 6. The resulting refined grid is shown
in Figure 12. Also, the inlet Mach number is in-
creased to 0.5 and the exit Mach number is fixed
at 0.6. This was done to study the behavior of
the filter for a different Mach number and also
to achieve convergence to steady state in the
same number of iterations as that for test case
1. The same blocking strategy as in test case 1
was used.



Figure 11: Grid for axisymmetric engine inlet with
15 blocks (test case 1)

Figure 12: Grid for axisymmetric engine inlet with
15 blocks (test case 2)

Results

The test cases were run on an IBM SP2 parallel
supercomputer located in Poughkeepsie, New York.
The communication subsystem used by the SP2 is
HPN (High Performance Network) using a switched
Fast Ethernet. Up to 15 of the available 16 proces-
sors on the SP2 were used for the current study.

As described in test case 1, first a steady state so-
lution is obtained for the prescribed geometry and
flow conditions. Next, the Courant number was in-
creased to 3.0 for all nodes in each block. A filter
matrix as defined in Eq. (20) was recalculated ev-
ery 100 steps. Only 4 out of 21 waves were kept as
defined in Eq. (24). Also an interface filter designed
for a Courant number of 3.0 was used to damp oscil-
lations near the boundaries. The solutions obtained
are plotted in the form of the nondimensional density
variation at the midpoint of each block. Figures 13—
14 show a comparison of the solution obtained with
the two Courant numbers. The iteration number
for the case with Courant number 3.0 in the figures
have been normalized to those for Courant number
1.0, i.e., the iteration number for a Courant num-
ber of 3.0 is scaled by 3. The solution components
because they have been damped out by the block
and interface filter. However, the final steady state
solution reached with both Courant numbers is the
same, and hence it is not necessary to integrate the
high frequency components if only a steady state so-
lution is desired. The above procedure is similar to
a multigrid scheme where high frequency waves are
filtered by using a coarse grid. In this case only a
single grid is utilized. The number of waves to be
kept is determined based on stability and accuracy
conditions. The basic Runge-Kutta algorithm is not
modified; only a filtering algorithm is added to mod-
ify the solution at each time-step. Finally, for each
block a different filter is designed based on local flow
conditions and grid size.

The Courant number is increased to 6.0 as de-
scribed in test case 2 with the refined grid. Block
and interface filtering is switched on to damp the
high frequency oscillations (for wave numbers grater
than 4), arising from the instability of the explicit
Runge-Kutta scheme for this Courant number. The
solution is again plotted in the form of the nondi-
mensional density variation with iteration number
normalized to a Courant number of 1.0. From Fig-
ures 15-16 it can be seen that as in the results for
test case 1, the high frequency components are ab-
sent from the solution for C=6.0. However, the
steady state solution obtained with a Courant num-
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ber of 6.0 is the same as the steady state solution
obtained with a Courant number of 1.0.

Finally, to provide an idea of the expected im-
provements in the parallel speedup and efficiency
from the above filtering techniques, Figures 17 and
18 show the speedup and efficiency obtained for the
two test cases with the IBM SP2 parallel supercom-
puter. Speedup and efficiency for these cases are
defined as follows:

Elapsed Time with C = 1.0 on 1 Processor

Speedup = Elapsed Time on n Processors
(32)

From Figures 17 and 18 it can be seen that very
high parallel speedup and efficiency can be achieved
with the implementation of the filtering techniques,
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respectively. An effective speedup of 2.2 and 4.3 is
achieved on the single processor case with Courant
numbers of 3 and 6, respectively. Hence the effi-
ciency of the filtering procedure is estimated to be
about 70%. It is conceivable that with more effi-
cient FFT algorithms or with grid dimensions which
are a power of 2, this overhead may be reduced con-
siderably yielding even greater parallel speedup and
efficiency.

Conclusions

The proposed filtering techniques are aimed at im-
proving the efficiency of a numerical scheme by se-
lecting the information to be computed. The aim
is to calculate the accurate portion of the solution
and filter the inaccurate part which in fact increases
the computational cost. The design of the filter can
be automated based on the calculated initial results.
The scheme provides the same benefits of the multi-
grid technique, yet it i8 adaptive to the problem and
works on a single grid. One can design filters for
both implicit and explicit schemes without modify-
ing the original algorithm.
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